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ABSTRACT

GRAPH THEORY IN AN UNDERGRADUATE LOWER-DIVISION 
COMPUTER SCIENCE ALGORITHMS COURSE

Mary Fleming Courtney

Since the field of computer science has grown 
dramatically, a need exists to design good curricula. 
Much has been written about teaching progamming courses, 
but less discussion has taken place concerning 
algorithms courses. In preparing to teach an algorithm, 
the teacher must be concerned with motivating the 
students, eliciting an algorithm from the students, and 
deciding on a good data structure.

The field of graph theory offers fascinating 
algorithms to teach. Unfortunately, it is only recently 
that the study of graph theory and discrete mathematics 
has been established in college curricula. Therefore, 
many of the faculty in computer science have modest 
backgrounds in this field. With this in mind, the 
author wrote a sourcebook on graph theory to aid faculty 
in preparing their lectures for a computer science 
algorithms course. Included in the sourcebook are 
historical anecdotes, problems for classwork and 
homework, different types of mathematical proofs, 
techniques for teaching algorithms, and a Pascal program 
demonstrating the algorithms. The sourcebook contains
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such topics as isomorphism, computer representation of 
graphs, planar graphs, graph traversals, Euler and 
Hamilton circuits, graph coloring, minimum spanning tree 
algorithms, Dijkstra's shortest path algorithm, 
topological sort and efficiency and classification of 
algorithms.

The sourcebook was submitted to two different 
juries for evaluation. The first jury, consisting of 
computer science faculty from Pace University, used the 
book as a reference for their lectures during the spring 
semester of 1990. The second jury, consisting of 
mathematics and computer science faculty in the 
metropolitan area, performed a critical reading. Both 
juries responded to the same survey asking technical, 
pedagogical and theoretical questions.

Most jury members agreed to the combining of the 
mathematical and computing aspects of graph theory in an 
algorithms course. There was some disagreement as to 
the use of tracing code during class. A few jury 
members preferred leaving an algorithm in pseudo-code. 
Others felt that for some algorithms the students needed 
the detailed explanation of executable code. The 
teaching of efficiency of algorithms and NP completeness 
is difficult, yet the graph theory offers rich examples 
for this topic. All of the jury members were grateful 
for the opportunity to discuss pedagogy.
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CHAPTER I 
INTRODUCTION

The Need for the Study

The field of computer science has grown explosively, more rapidly than any other discipline in history. It is unique in that it evolved from researchers from diverse backgrounds instead of emerging from an existing discipline. Other fields, such as molecular biology, had the 
advantage of emerging from broader disciplines that could contribute researchers of all ages, along with resources and structures. Computer scientists came from many backgrounds and have not been able to bring the support structures of a mother discipline with them. (Hopcroft, 1987, p.202)
Hopcroft notices that the rapid growth of computer

science causes difficulty for the discipline. With
questions such as "What is Computer Science" still being
answered, Computer Science(CS) educators confront many
problems.

Less than half of the full time and only 30% of the 
part-time faculty of CS and CS/Mathematics departments 
have their terminal degree in Computer Science. (Albers, 
Anderson & Loftsgaarden, 1987) Forty-nine percent of the 
lower level courses, among which Data Structures and 
Algorithms would be considered, are taught by part-time 
faculty. Many of the faculty are limited in what they 
can teach and therefore may have a poor overview of 
Computer Science. "One-third of the full time and 3/5 
of the part time CS faculty teach only lower level or 
specialty courses". ( Albers et al., 1987, p.92) It is
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doubtful that many of the faculty in CS or Mathematics 
Departments have studied graph theory in formal 
coursework. The 1985-1986 Survey of Conference Board of 
the Mathematical Sciences (CBMS) states that of the
637.000 students studying calculus level mathematics 
courses only 14,000 students were studying Discrete 
Mathematics. The discrete mathematics in the Computer 
Science Departments was offered to 12,000 of the 350,000 
studying lower level courses. And only 4,000 of the
142.000 enrolled in upper level CS courses studied 
Discrete Structures. (Albers et al, 1987) Most of the 
people who have doctorates in Computer Science teach at 
universities. Universities use published research for 
faculty advancement, which encourages the professors to 
engage heavily in their research. How much involvement 
do they have in CS education? The National Science 
Foundation (NSF) workshop on Undergraduate Computer 
Science Education recommended that Presidential Young 
Teacher Awards be given to "provide incentives and 
rewards for creative and successful teaching of 
undergraduates, indicate to administrators, faculty, and 
students that both teaching and research are significant 
and bring national attention to the importance of 
educational excellence". (Foley, 1988, p.2) Good 
teaching cannot be assumed or ignored; it must be 
encouraged and rewarded.

Credit should be given to the professional
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educational societies that have placed emphasis on 
education. Computing Sciences Accreditation Board 
(CSAB), the accrediting board that emerged from 
Association for Computing Machinery (ACM) and IEEE 
Computing Society, has set up standards for curriculum, 
material, and faculty. ACM's Special Interest Group on 
Computer Science Education (SIGCSE) publishes a journal 
quarterly; their annual symposium is well attended, 
though the educational issues addressed have centered 
around teaching CS1, CS2, and the use of group projects 
in software engineering. CS1 and CS2 are the first two 
computer science courses in the ACM Curriculum '78 
(1981). Of the 78 topics in the advance program for '89 
SIGCSE Symposium, only 6 deal in any manner with graph 
theory or algorithm complexity, as did 2 of the 98 
topics in '87 SIGCSE. Graph theory and time complexity 
are difficult topics to teach. Why isn't there more 
being discussed?

Since 1979 the number and quality of programming 
textbooks in Pascal have increased dramatically.
Elliot Koffman and Nell Dale are two authors of Pascal 
texts who are interested in educational quality and are 
very active in SIGCSE. The computer science algorithms 
textbooks have not been adequate in aiding the teacher 
or the student in the field of graph theory. Aho, 
Hopcroft, Ullman(1983) and Tarjan(1983) wrote classical 
books that are not appropriate for a sophomore level
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course in algorithms. Sedgewick's(1986) and Baase's 
(1988) texts assume elementary material and 
undergraduate students have a difficult time 
understanding their texts. Data structures books such 
as Kruse(1987) and Wulf,Shaw, Helfinger, and Flor(1981) 
are well written, yet they do not cover graph theory 
sufficiently. Deo's(1974) and Goodman and Hedetniemi's 
(1977) texts should be updated with regard to code and 
flowcharting. Horowitz and Sahni (1978) have a different 
approach in their text. The graph theory algorithms are 
not together; algorithms are divided according to their 
method of solution, greedy, divide and conquer, and 
backtracking.

The CS curriculum requires the algorithms to be 
written in a pseudo-code format in preparation for 
writing a program. Frequently the graph theorists such 
as Even(1979), Berge(1973), Harary(1969), Melhorn(1984), 
Gondian and Minoux(1984), and Bondy and Murty(1976) are 
mathematicians and show no connection between 
mathematics and computer science. Tremblay and 
Manohar(1975) and Prather(1976) wrote discrete 
mathematics textbooks which cover graph theory but not 
from a CS curriculum viewpoint. Since a number of lower 
level courses are taught by underqualified faculty, the 
curriculum material must be particularly well organized. 
"There is a need to upgrade the skills of current 
computer science faculty particularly those who switched
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into computer science from other disciplines... 
instructional materials need to be brought up to date". 
(Foley, 1988, p.5)

Are teaching faculty aware of the importance of 
graph theory in algorithm courses? The Carnegie Mellon 
Curriculum Committee places emphasis on a "set of 
courses that present algorithms and the mathematical 
foundations of CS with emphasis on integrating the 
practical aspects of the material with the presentation 
of the theory." (Shaw,ed., 1985, p.4) Tarjan in his 
Turing Award Lecture discusses the significance of 
designing algorithms.

But there is a more profound dimension to the design of efficient algorithms. Designing for theoretical efficiency requires a concentration on 
the important aspects of a problem so as to avoid redundant computations and to design data 
structures that exactly represent the information needed to solve the problem.... The result is not only an efficient algorithm, but a collection of insights and methods extracted from the design process that can be transferred to other problems.... it is these insights and general methods that are of most value to practitioners, since they provide tools that can be used to build solutions to real world problems. (Tarjan, 1987, p.205)

In preparing to teach an algorithm, a teacher must be 
concerned with motivating the student, eliciting an 
algorithm from the students, deciding on a good data 
structure, and helping the students to improve their 
ability to transfer problem solving methods.

Why study graph theory in CS? First, graph 
theorists need the computer to solve their larger
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problems. Since graph theory answers many real world 
problems, the motivation for learning algorithms comes 
from the problems themselves. Telecommunications, 
biology, engineering, psychology, and sociology all use 
applications of graph theory. Secondly, CS students 
need graph theory for foundations of other areas in CS. 
"Networks and trees are used in the study of data 
structures, compiling, programming languages, operating 
systems, computational theory, sorting, searching, and 
AI" (Goodman and Hedetniemi,1977, p.35). Lastly, the 
algorithms in graph theory provide great examples for 
teaching time complexity; it is much easier than using 
switching functions to teach time complexity. (Personal 
conversation, H.Poliak, Fall 1989)

Historical background and interesting problems are 
needed to increase the teachers' ability to motivate the 
students. What topics in graph theory should be taught 
in a CS algorithms course? The order of topics and the 
development must be considered. Is it beneficial for 
the students to understand isomorphic graphs, planar 
graphs, Euler and Hamilton circuits before they start 
coding depth first searches or minimum spanning trees? 
Appropriate programming problems must be devised to 
develop the students' understanding of graph theory. The 
CS curriculum at Pace University offers two courses in 
Data Structures and Algorithms and 35 to 50% of the 
second course is set aside for the study of graph
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theory.
In addition to the question of qualified faculty, 

the present focus of Computer Science educators and the 
lack of appropriate textbooks all suggest a need for 
Computer Science educators to implement effective means 
for teaching graph theory and time complexity for 
undergraduate students.

The Purpose of the Study

The purpose of this study was to produce a 
sourcebook for college teachers of computer science, 
especially those with modest mathematical backgrounds, 
on the topics of graph theory and analysis of 
algorithms, and to carry out an evaluation of the source 
book utilizing reviewers who are active college 
teachers. In order to increase the teachers' 
opportunities to motivate the students, the mathematical 
development has been supplemented by historical 
background, interesting problems and application to 
programming.

The sourcebook was evaluated by submitting it for 
critical reading to a sample of college teachers. Some 
teachers had the opportunity to use the source book in 
their teaching. On the basis of questionnaires 
distributed to colleagues, the investigation attempted 
to answer the following questions.
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Technical Questions
Is the material clear and precise?
Is the terminology consistent?
Was the numbering of lines of code useful for class lectures?

Pedagogical Questions
Is the material interesting and motivating?
Are the teaching techniques used helpful?
How important is the code in the teaching of the graph theory algorithms?
Do the homework sheets supplement the lesson properly?
Are there other pedagogical issues that should be addressed?

Theoretical Questions
Does the material help to teach the topic of time complexity?
Is it helpful in the teaching of algorithms?
Do you like the mixing of mathematics with computer science?
Are the topics developed in the correct order?
Are there topics that should be excluded?
Are there topics missing?

Since some responses were made after the 
sourcebook was used in teaching, interesting feedback 
was given. This new information,in turn provided 
additional information for future teachers of an 
algorithms course.



www.manaraa.com

9

Procedures

After teaching the topic of algorithms and graph 
theory several times, the investigator wrote a 
sourcebook for teachers on the teaching of graph theory. 
The book ordered and developed topics that are listed in 
Appendix A. The investigator then used the first draft 
of the sourcebook in teaching an undergraduate 
algorithms course in the fall semester of 1989. This 
teaching led to a number of revisions.

Included in the sourcebook were motivation 
examples, suggested teaching techniques, homework 
problems, and programming problems that reinforce and 
supplement the teaching.

The evaluation of the sourcebook was done in two 
ways. First, Pace University faculty teaching an 
algorithms course in the spring semester of 1990 used 
the sourcebook in preparation for their lectures. In 
addition to the sourcebook, they received a disk with 
the solution to the program assignment in Turbo Pascal. 
At the end of the semester, they responded to a 
questionnaire prepared by the investigator and in two 
cases a meeting with the investigator was held. This 
group was referred to as Jury A. Secondly, a group of 
four college teachers with different backgrounds from 
the New York City metropolitan area read the sourcebook
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and responded to appropriate questions of the same 
questionnaire. They are to be known as Jury B. The 
responses to the questionnaire were then summarized and 
analyzed.
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CHAPTER II 
SURVEY OF THE LITERATURE

The Computer Science core that makes up 40 to 60 
percent of the computer science requirement "must 
provide reasonably even emphasis over the areas of 
theoretical foundations of computer science, algorithms, 
data structures... Within this portion of the program, 
analysis and design experiences with substantial 
laboratory work, including software development, should 
be stressed." (Computing Sciences Accreditation Board, 
1987, p.9) The design and analysis of algorithms are in 
the core of the Computer Science Curriculum. (ACM 
Education Board, 1981) This survey of literature 
includes a review of the current literature on computer 
science education, a review of popular data structures 
and algorithms textbooks, a review of discrete 
mathematics textbooks, theoretical computer science 
textbooks, and graph theory textbooks.

Computer Science Education Reports

In 1988, a workshop was held at George Washington 
University, sponsored by the National Science 
Foundation, on Undergraduate Computer Science Education. 
The committee members produced a report (Foley, p.3) 
"identifying the major problems of undergraduate 
computer science education, and giving possible
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solutions to these problems." Setting up quality 
curriculum in a fast changing field is overwhelming. 
Getting qualifed faculty to teach in undergraduate 
departments is another hurdle. A new need exists for 
professionals in other disciplines to learn enough 
computer science to be competent in the two fields. The 
committee encourages joint majors where students satisfy 
the core in both disciplines, and then study additional 
courses that deal with computing in the second 
discipline. Good teaching and faculty retention are 
also discussed with solutions such as teacher awards and 
the establishment of teaching centers. Computer science 
must be regarded as a laboratory science with enough 
equipment, software and staff provided.

In discussing the weaknesses of ACM's Computer 
Science Curriculum '78, Tucker and Garnick in their 
paper "A Breadth-First Approach to the Introductory 
Curriculum in Computing" (1990, p.5) claim "No 
introductory course in the curriculum model directly 
relates the principles of logic, combinatorics, and 
graph theory to their many applications in computing." 
They also critize the outdated programming methodology: 
the teaching of block structured languages such as 
Pascal rather than modular languages (Modula-2) which 
allow students to practice principles of abstraction and 
design. The authors refer to Ralston's (1984) proposal 
for a mathematics co-requisite for the first programming
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course. Listed are the essential topics in mathematics 
and the topics in computing that require them. Graph 
theory is listed in the discrete mathematics area and 
analysis of algorithms, computational complexity, 
networking problems and compiler are listed in the 
computing topics requiring the mathematics.

Tucker and Garnick are proposing that the 
introductory curriculum include more theoretical topics. 
When theory is taught in a separate course as Discrete 
Mathematics, "students rarely draw the strong 
connections between theory and its place within the 
discipline." (Tucker and Garnick, 1990, p.20). With the 
teaching of

mathematical definitions of graphs,connectedness, directedness, traversals ... a general overview of networks can reasonably follow, in this context, and thus provide another example of the coherence of theory, abstraction, and design in the discipline of computing. (Tucker and Garnick,1990,p. 22)

In Shaw's paper "Information for a New Century 
Computing Education for the 1990s and Beyond",(1990) she 
informs computer science educators what is needed in 
their departments to be current and relevant. She sees 
four groups of computer users: computer scientists, 
computational specialists, light duty developers and 
casual users. Computer science educators in conjunction 
with other departments must provide for joint majors to 
satisfy the growing need of computational specialists in
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other disciplines. In discussing flaws in the current 
software curriculum, Shaw states, "Moreover, students 
rarely read good programs? it's as if we asked students 
to write good English without reading good prose."
(Shaw, 1990, p.10)

In the final report of Computing as a Discipline 
(Denning, 1988), theory, abstraction and design as in 
the mathematical sciences, natural sciences and 
engineering are discussed as fundamental in the 
computing discipline. The committee struggled with 
defining computing but states,

The discipline of computing is the systematic study of algorithmic processes that describe and transform information: their theory, analysis, design efficiency, implementation and application. The fundamental question underlying all of 
computing is "What can be (efficiently) automated?" (Denning, 1988, p. 7)
Denning and his committee have set up guidelines 

for a new curriculum for the introductory course. The 
first course would include topics from 11 different 
modules of computing from algorithm concepts and data 
structures to operating systems and parallel 
computation. It is being assumed that students are 
proficient in programming before studying this course. 
Laboratory work should be supervised and closely aligned 
with theory.

In Appendix I included in the list of major 
elements of theory of algorithms are computational 
complexity theory, classes of problems in P (polynomial
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bounded time) and NP (nondeterministic problems in 
polynomial bounded time) and supporting areas of graph 
theory and recursive functions. Graph color theory is 
listed under human computer communication. Appendix II 
describes in detail the topics for the introductory 
course.

The ACM Recommended Curriculum for Computer Science 
and Information Processing Programs in Colleges and 
Universities; 1968-1981 (1981) includes Curriculum '68 
and Curriculum '78 of computer science. CS7 in 
Curriculum '78 includes graphs, algorithms for finding 
paths and spanning trees, basic techniques of design and 
analysis of efficient algorithms and intuitive notion of 
complexity (e.g.NP- hard problems).

Data Structures and Algorithms Textbooks

In Data Structures with Abstract Data Types and 
Pascal. Stubbs and Webre (1989) include one chapter of 
30 pages on graph theory. The authors explain the data 
structures, algorithms, code for creating a graph, 
and traversing graphs in breadth first or depth first 
manner. Prim's method for determining Minimum Spanning 
Tree is developed yet Kruskal's method is not given. 
Introductory material on graphs, Euler paths, Hamilton 
paths, isomorphic graphs, planarity and NP problems are 
not mentioned.

Horowitz and Sahni have revised their Fundamentals
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of Data Structures in Turbo Pascal (1989) and 
Fundamental of Data Structures in Pascal (1990). The 
chapter on graph theory is brief. While the authors 
claim that only an introductory programming course and 
modest mathematical backgrounds are prerequisites for 
the course, the code omitted in some algorithms is 
difficult. The code for Kruskal's algorithms asking 
whether an additional edge creates a cycle in minimum 
spanning tree is quite involved. "Union-find" algorithms 
are mentioned in a previous chapter on sets, yet the 
text fails to explain how to use these algorithms in 
determining whether a cycle has been found.
Isomorphism, planarity, NP problems are not discussed.

Kruse (1987) is the author of Data Structures and 
Program Design, a text used for teaching the first 
semester of a data structures and analysis course at 
Pace University. He devotes a good deal of space to 
software engineering, recursion and trees. In allowing 
only two sections for graph theory topics, Kruse (1987, 
p. 416) writes "we have hardly begun to scratch the 
surface of the broad and deep subject of graph 
algorithms."

Tennenbaum and Augenstein (1986) devote a fair 
amount of space to graph theory in their text, Data 
Structures Using Pascal. The code when given is 
complete and readable. Kruskal's method of determining 
a minimum spanning tree is left as an exercise. They
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have not taken the opportunity to discuss classical 
problems, Konigsberg bridge problem, Hamilton paths and 
Travelling Salesman problem, graph coloring, and the 
relationship between these problems and the NP class of 
problems.

Sedgewick's Algorithms (1986) is the text used 
presently in this investigators's Data Structures and 
Analysis of Algorithms II course. John Remington the NY 
Territory Manager of Addison Wesley mentioned that 
college professors have a "love/hate relationships with 
this textbook" (personal conversation, Spring 1989). 
Sedgewick's presentation is compact; he has a mastery of 
the topics. The coding is concise, but sometimes 
difficult to follow. Many times the commentary does not 
give adequate explanations - it lacks development which 
is needed for a core course. His pictures can be 
confusing to the undergraduate student. Hamilton cycles 
are mentioned briefly as is the Travelling Salesman 
problem. Euler paths, isomorphic graphs, and graph 
coloring are missing. He does not explain how the 
"union find" algorithm is used in Kruskal's 
determination of minimum spanning tree. In his second 
edition, he refers to fast find which is incorrectly 
labelled in Chapter 30. If one has a substantial 
knowledge of the material, Sedgewick's text would 
provide an interesting commentary. It is just a 
difficult text for undergraduate students to read and
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understand.
Sara Baase (19Q8) has also written a text on 

computer algorithms. In the preface to Computer 
Algorithms Introduction to Design and Analysis. Baase 
states that she intended the text for a one semester 
upper division course in algorithms, analysis of data 
structures and algorithms where the emphasis is on 
algorithms. Baase also states she taught the course to 
students with a strong mathematical background and she 
left details out in many algorithms. Baase includes 
graph theory in two chapters in the 2nd edition. For 
those students who have had a thorough introduction to 
graph theory in a discrete mathematics course or 
previous algorithms course, the text would not be an 
obstacle. Much of the introductory material has been 
omitted. Euler paths are left for an exercise.
Hamilton paths and planarity are not mentioned until the 
discussion on NP Completeness. The only reference to 
the history of graph theory is in the Notes section at 
the end of the chapter. Kruskal's algorithm for minimum 
spanning tree is discussed in a later chapter since it 
needs the union find algorithm, but the discussion is 
mathematical and difficult for a sophomore CS major.

It is interesting that she would use parallel 
arrays rather than arrays of records in her graph 
algorithms. "Because the notation for a field in a 
record in an array is bulky (e.g. VertexData[V].status)
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compared with the notation for individual arrays (e.g. 
status[V]), we will use separated arrays."(Baase, p.162) 
She does not mention the disadvantages of using parallel 
arrays.

Horowitz and Sahni's Fundamental of Computer 
Algorithms (1978) covers many of the important topics of 
graph theory. The authors state in their preface that 
they wrote the textbook because they felt what was 
missing in algorithms textbooks was an emphasis on 
design techniques. The chapters are organized according 
to these design techniques - divide and conquer, greedy 
method, dynamic programming, backtracking, branch and 
bound. It is a different pedagogical approach but one 
that can prove difficult for lower class levels. The 
graph theory is interspersed with other material (sorts, 
hashing, reliability design, code optimization) and may 
appear very confusing. The coding (SPARKS) is revised 
from the first edition of their data structures book, 
yet the comments and assignment statements prove a 
hindrance to the readability of the code. In their 
preface, they "view the material presented here as ideal 
for a one semester or two quarter course given to 
juniors, seniors or graduate students." (Horowitz & 
Sahni,1978, p. ix) The mathematical notation and ideas 
presented in the chapter on NP completeness are 
difficult in nature.

Knuth in his Fundamental Algorithms (1968) was the
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first to gather much of the early research in computer 
science. As a mathematician, Knuth gives much space to 
mathematical proofs. Ideas such as topological sorting 
and Prim's algorithm for minimum spanning trees are 
introduced in exercises. Adjacency matrices and lists, 
and graph traversals are not mentioned. It is 
beneficial though for students to be introduced to the 
reading of Knuth. Aho, Hopcroft and Ullman's text Data 
Structures and Algorithms (1983) is a popular textbook 
used for those students who have good backgrounds in 
mathematics, not only in discrete mathematics but also 
in logic. Many of the demanding exercises are proofs. 
Dijkstra's shortest path algorithm is proven. An 
analysis of many of the algorithms is given in big-oh 
notation.

Discrete Mathematics Textbooks

John Molluzzo and Fred Buckley in A First Course in 
Discrete Mathematics (1982) present a discrete 
mathematics textbook with computer applications. An 
entire chapter is devoted to graph theory including 
definitions, isomorphic graphs, minimum spanning trees, 
planar graphs, adjacency and distance matrices, Euler 
and Hamilton circuits and the critical path method.
There is a special note listing items to check when 
showing that two graphs are not isomorphic. A number of 
exercises throughout the chapter include short method
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type examples and mathematical proofs. A case study of 
the heapsort is included in this chapter. There are 
answers to selected odd-number problems.

Discrete and Combinatorical Mathematics by Ralph 
Grimaldi (1985) was written for the sophomore-junior 
level. Graph theory is distributed among three 
chapters. In addition to the usual topics in graph 
theory, isomorphism, Euler and Hamilton circuits, 
Grimaldi adds "real world" type examples. He uses the 
Instant Insanity problem as an example that can be 
solved using ideas from graph theory. Grimaldi also 
includes the definition of homeomorphic graphs and a 
demonstration of Kuratowski's theorem on planar graphs. 
Graph coloring and chromatic polynomials comprise an 
entire section. Breadth first and depth first searches 
are demonstrated in the chapter on trees. The 
optimization and matching chapter includes Kruskal1s and 
Prim's algorithm for minimum spanning trees and the max 
flow min cut algorithm for transport networks. Matching 
theory and bipartite graphs for which the Stable 
Marriage problem is an example are also presented.

Skvarcius and Robinson in Discrete Mathematics with 
Computer Science Applications (1986) have divided graph 
theory into two chapters: undirected graphs and directed 
graphs. Algorithms such as nearest neighbor method for 
the Travelling Salesperson problem are written in pseudo 
code. The Backus-Naur Form, a language used to describe
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the syntax of programming languages, is given as an 
application of a tree. The exercises at the end of the 
chapter include method type problems and a few short 
proofs. The chapter on directed graphs includes 
topological sort, Warshall's algorithm for reachability, 
and Dijkstra's algorithm for shortest paths. Graphs are 
always represented as adjacency matrices. An 
application of a computer network completes the chapter.

In his preface, Sahni in Concepts in Discrete 
Mathematics (1985) states that there is a bias toward 
computer science in this text. He feels that all 
science students with the traditional approach of 
learning mathematics through calculus miss out on many 
important discrete mathematics ideas. An entire chapter 
is devoted to analysis of algorithms. Intuitive 
understanding and mathematical analysis are given for 
big-oh notation. In graph theory, the definitions are 
given with few examples. Adjacency matrices, packed 
adjacency lists and adjacency lists are shown to store 
information from graphs. Pseudo-code is used to 
demonstrate breadth first and depth first traversals, 
and Kruskal's spanning tree algorithm. Big-oh notation 
is discussed throughout the entire chapter on graph 
theory. Euler's theorem for planar graphs R = E-V+2, 
homeomorphic graphs, bipartite graphs, and cliques are 
included in the miscellaneous topics. The examples at 
the end of the chapter include method type problems and
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short proofs.
Dierker and Voxman's text Discrete Mathematics 

(1986) is offered for courses at the freshman and 
sophomore level. Graph theory is introduced early in 
the text for the author finds graphs have interesting 
applications. In the section on connected graphs, a 
simple method for determining whether graphs are 
connected is given. Pseudo code for finding a minimum 
spanning tree using Kruskal's method is presented. 
Kruskal's algorithm is mathematically proven. Set 
notation is used throughout the chapter. Critical path 
method and its examples are demonstrated. Gray codes 
are explained using the reading of photoelectric cells 
on a disk as an example of the Hamilton circuit. The 
exercises include method type problems and short proofs.

Discrete Mathematics for Computer Science by Angela 
Shiflet (1987) is offered as a text for a freshman or 
sophomore level course. After the definitions and 
computer representation of graphs (only adjacency 
matrices) are given with a few examples, there is a 
section on trees with binary searches and preorder, 
inorder, postorder traversals. Finite state machines 
are given as an application of graphs. Kruskal's 
algorithm for minimum spanning tree is given as are 
Euler's circuits and Hamilton circuits, with no shortest 
path algorithms. Historical notes are interspersed 
throughout the chapter. Most of the exercises are
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method type problems.
Fred Roberts in Discrete Mathematical Models (1976) 

discusses graph theory with real world applications, 
some of which are one-way streets,tournaments, food webs 
and garbage trucks and colorability.

Tucker's Applied Combinatorics (1984) is divided 
into two areas: graph theory and enumeration. He 
proposes it as a text for the discrete mathematics 
course in ACM's Curriculum'78 and states that it can be 
used by a wide range of students from sophomores to 
graduate students. The text uses many examples to teach 
theory and the problem sets are very extensive. The 
graph theory section includes the following topics: 
isomorphism, planar graphs, Euler and Hamilton circuits, 
graph coloring, minimum spanning trees, shortest path, 
and network flow algorithms.

Theoretical Computer Science Textbooks

Alqorithmics. Theory and Practice by Brassard and 
Bratley (1988) contains elementary discussion on 
algorithms, efficiency notation and an introduction to 
NP completeness.

Garey and Johnson's Computers and Intractability 
(1979) is the uncontested authority on NP completeness 
according to Brassard and Bratley (1988). The 
introduction gives an intuitive understanding of NP
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complete problems. Throughout the text are examples of 
NP complete problems, discussion of P vs. NP, Cook's 
Theorem and proof and an extensive list of problems that 
are classified as NP. Included in the list of open 
problems are graph isomorphism, composite number and 
linear programming(which is now known to be polynomial).
” Kfoury, Moll and Arbib's A Programming Approach to 

Computabilitv (1982) is a textbook used for theoretical 
computer science courses. The unsolvability of the 
Halting problem is discussed several times throughout 
the text.

Graph Theory Textbooks

In order to include more theorems than otherwise 
would be possible,. Harary (1972, p.V) in Graph Theory 
has found it "pedagogically advantageous not to include 
proofs of all theorems." Harary includes the Konigsberg 
bridge problem, the Four Color Conjecture, cutpoints, 
connectivity, traversals, planarity, colorability and 
enumeration.

Shimon Even's Graph Algorithms (1979) is meant to 
be a textbook for an upper level undergraduate or 
graduate course. Most of the theorems and lemmas are 
proven in the text. Even includes Hopcroft and Tarjan's 
proof of testing planarity in linear time. An entire 
chapter is devoted to Ford and Fulkerson's maximum flow
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in a network and another chapter to NP completeness.
Many of the exercises are mathematical proofs.

Biggs, Lloyd and Wilson's Graph Theory 1736-1936 is 
an unusual mathematics book in that original papers are 
included in the text. Biographical information is 
included as the history of graph theory is developed 
throughout the book. The Koningsberg bridge problem, 
Knight's tour, trees, chemical graphs, Euler's formula 
for regions in a planar graph, four color theorem and 
graph coloring are the main topics of the book.



www.manaraa.com

27

CHAPTER III 
DEVELOPMENT OF THE SOURCEBOOK

One of the main tasks of curriculum planning is 
selecting and organizing content. (Taba,1962) The 
material in the source book (Appendix B) on graph theory 
should provide material for ten two-hour lectures. This 
would cover at least one-third of a four credit course. 
In addition to studying sorting and searching algorithms 
and their time complexity, this leaves little or no time 
for string processing and geometric algorithms. Taba 
(1962, p.12) states, "If reflective thinking is an 
important goal, a thorough study of fewer topics and 
greater opportunities to relate ideas would be more 
important than a complete coverage of facts." With the 
careful study of graph algorithms and trace tables, the 
students should be able to understand other algorithms 
on their own, if required in another course or assigned 
at work. Tracing through code is an exercise that 
should be developed early in the college career. In 
addition to "getting the gist" of an algorithm, it is 
worthwhile to know exactly what is happening. The 
technique used for tracing recursive code on p.27D of 
the sourcebook has been instrumental in helping the 
students understand recursion. Actually, the students 
gave evidence of the proficiency of understanding a new 
algorithm by presenting to the entire class an algorithm
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that was researched on their own.
The first chapter of many graph theory books 

contains all the definitions. In contrast, the 
definitions appear in the sourcebook when they are 
needed. Problems exist with definitions in graph 
theory. First instinctive definitions may not be 
correct. For example in the first definition of graph, 
an edge connects two distinct vertices. Later on, in 
the discussion of Euler circuits, a graph with two edges 
between two adjacent vertices is allowed. It is defined 
as a multigraph, but is still a graph. The definition 
of graph has been extended.

The Denning report (1988) and Tucker and Garnick's 
paper (1990) both propose that the discrete mathematics 
be taught in computing courses when appropriate. The 
investigator found it necessary to cover topics like 
isomorphism, planar graphs, Euler and Hamilton circuits 
before teaching Kruskal's and Prim's minimum cost 
spanning tree algorithms and Dijstra's shortest path 
algorithm. Covering the data structures for graphs early 
in the curriculum after a few basic concepts prepares 
the students for beginning their program assignment.
Few deny that computer science is a mathematical science 
and integrating the two especially in the field of graph 
theory is rewarding. The level of mathematics needed to 
study graph theory is not particularly high. However, 
the more sophisticated the student is in mathematics,
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the greater the understanding will be. Familiarity with 
the different types of proofs would be beneficial. In 
any case, the students should follow the proofs by 
contradiction in the sourcebook, the halting problem on 
page 60D and the lemma on page 35D proving that any 
connected planar graph has one vertex whose degree is at 
most 5. The opportunity to use a proof by induction 
exists with the Five Color Theorem on page 35D. Most 
students have satisfied the year requirement of 
calculus, but not all. Many students have not yet 
taken a course in discrete mathematics.

The curriculum was planned with the hope for much 
interaction between the teacher and the students. This 
investigator never agreed with this definition of a 
lecture - what passes from the notes of the professor to 
the notes of the students without passing through the 
minds of either. "A passive mind is still assumed in 
too large a part of teaching." (Taba,1962, p.77) Most 
topics were introduced with a question or problem to 
stimulate students' thinking. The students should be 
given an opportunity to discover the algorithms 
themselves. While the source book has the explanations 
and code of many of the algorithms, it was never the 
intention of this investigator for the sourcebook to be 
lecture notes. Interaction among the students and the 
teacher should be the goal.

The difference between a tree and other graphs was
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given on p.39D. The students are previously familiar 
with trees, especially binary search trees. This 
investigator agrees with the ACM Education Board (1981) 
that the more careful study of graph theory should 
follow the earlier use of trees in the computer science 
curriculum. While the data structures themselves are 
not complicated, the problems to be solved and the 
tracing of the code are more difficult than searching or 
traversing through a binary search tree.

The topics from discrete mathematics were chosen 
for several reasons. Hamilton paths (page 28D) are 
important for the Travelling Salesman problem - a 
popular problem in computer science circles. Euler 
circuits(page 17D) can be found in the Chinese Postman 
Problem. The ideas of isomorphism and planarity (pages 
2D and 10D, respectively) should be learned, perhaps not 
as intensely in a computer science course as in a 
mathematics course. Planar graphs are needed in graph 
coloring. Graph coloring (page 33D) is an interesting 
problem in discrete mathematics or computer science.
Many mathematicians still call the 4 Color Theorem a 
conjecture since the problem was solved only with the 
use of the computer.

Time constraints did not allow including 
algorithmic code for Euler paths or testing planarity. 
The brighter students may choose either one of them for 
their class presentation. (see Gibbons, 1985) The code
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for Kruskal's algorithm for minimum spanning tree was 
not included; it assumes knowledge of the "union find" 
algorithm which has not been previously taught. Network 
flow algorithms including the Ford-Fulkerson method are 
quite interesting yet the time constraint does not allow 
for their discussion in this computer science course.

Homework problems were included on separate sheets. 
(Appendix C) The tracing of the code on their own will 
act as a self-test for the students. Being comfortable 
with a previous lesson also prepares students better for 
the new material. Faculty may wish to use the sheets in 
class or for homework; so, the sheets were labelled 
Sheet #1, etc.

This investigator has included many historical 
anecdotes she has come across through lectures or 
readings. Hopefully, they make the course exciting.

This investigator had taught graph theory to 
undergraduates studying an algorithms course and also to 
CS graduate students. The notes from the class were 
corrected and typed into the "A" edition of the 
sourcebook. This investigator then used the A edition to 
teach the course during the fall semester of 1989. 
Corrections were made and examples added and rewritten 
for the B edition. Also, for the B edition, most of the 
code was executed on the computer in Pascal. Final 
touches and revisions including homework sheets and the 
programming problem were completed for the C edition. A
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disk with the graph program in Turbo Pascal (Appendix E) 
was also distributed. A jury of three computer science 
teachers at Pace University was selected to use the 
sourcebook in preparation for their lectures for the 
spring of 1990. A questionnaire, (Appendix F) was also 
distributed to this A jury. There was a second jury 
(Jury B) of teaching faculty from other colleges in the 
metropolitan area. While they had the opportunity to 
read the source book and answer the same questionnaire, 
they were not able to use it in preparation for a 
particular class. Any corrections and suggestions from 
both juries and readers were incorporated into the final 
D edition. Discussion of the evaluation by both juries 
is in chapter four of the dissertation.

The author discovered writing notes for one's own 
teaching is very different than writing for someone 
else's use. Nothing could be left to the imagination of 
the reader if a certain point had to be made. Having 
taught a course several times, teachers tend to have 
less information in their class notes. This is not a
good practice since the teacher may forget the struggle
of the first time learner.

Code had to be tested and executed to see if it
were valid. The only code that was not executed before
the B edition was written, was the topological sort on 
page 54D. Finally, during the C phase, when there was 
an attempt to execute this particular code, many



www.manaraa.com

33

problems arose. The original data structure 
implementation for the graph was not suitable, since an 
extra field for the incount of each vertex was 
necessary. The problem was corrected by allowing count 
to be a parallel array and thereby keeping the same data 
structure for graph. Topological sort was the first 
code that used a stack and all the stack operations had 
to be included. This was a lesson learned for the 
author in the lack of good software engineering 
principles.

When the code was to be cleaned up for distribution 
to the jury, miscellaneous trace statements were 
deleted, and global variables were changed. Also the 
data structures for graph and table were changed to 
records allowing for graph to contain the number of 
edges and table to contain the number of elements. The 
investigator decided not to change the data structure in 
the sourcebook. In order for the students to avoid 
excessively difficult syntax, the code was to remain 
simple for class discussions. The students would be 
expected when writing their program to improve the 
implementation. This is an excellent teaching strategy 
since much of the code for their program assignment is 
given to them during class and changing the 
implementation will force the students to review and 
understand the code. In the real world, adapting and 
improving code is the beginner programmer's major task.
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"Programming style should pervade the entire curriculum 
rather than be considered as a separate task." (Austing 
et al., 1981, p.121)
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CHAPTER IV 
EVALUATION OF THE SOURCEBOOK

Report on the Responses of the Questionnaire

Two different juries responded to the questionnaire 
(Appendix F). Jury A consisted of three faculty members 
using the sourcebook to prepare their lectures for an 
algorithms course they were teaching in the spring 
semester, 1990. The participants of Jury B were 
faculty members in mathematics and computer science 
departments who read the sourcebook but did not have the 
opportunity to use it for a class. This chapter first 
gives a report of their responses to the questionnaire 
followed by a discussion of the material that was or was 
not incorporated into the D and final version of the 
sourcebook.

The questionnaire was designed so that the 
participants of the jury would first respond to the 
short answer technical questions, and second to the 
pedagogical and theoretical questions. In this chapter, 
the responses to the theoretical questions from the 
survey are discussed before the responses to the 
pedagogical and technical questions.

Responses to the Theoretical Questions
Controversy existed on the teaching of introductory 

ideas of graph theory - isomorphism, planar graphs, and
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graph coloring in a computer science course. A member 
of the B jury didn't think it was necessary but believes 
it gives the students a richer experience. An A juror 
stated, "it demonstrates to students that when things 
are most difficult the theory gives (up) the most help." 
Another A juror agreed totally with this teaching of 
graph theory in computer science and extended it much 
further than the material contained in the sourcebook. 
Since he eliminated proofs and tracing of code from his 
lectures, he added additional topics to his lectures: 
Heawood's Map Theorem, Heuristic coloring, Matchings, 
Flows/networks, and Max Flow Min Cut Theorem. A member 
of the B jury thought students like mathematics better 
when they see its applications. She thought the end of 
the source book was a bit terse and more text and 
examples should be added there.

Alternatively, an A juror stated that these topics 
belong in a discrete mathematics course. The curriculum 
for the algorithms course consisted of staple algorithms 
- depth first and breadth first traversals, finding the 
minimal spanning tree and Dijkstra's shortest path 
algorithm. Therefore, the topics of isomorphism, 
planarity and graph coloring are not necessary.
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I feel that there is no better place than "in graph theory" for students to acquire generally transferrable insights and experiences in the fashioning of data structures and the design of 
algorithms; and I feel that by a fourth computer science course they are ready for these abstract lessons. This is what I aim to teach, and I feel it is much more important than any specific pieces of content (i.e. these lessons are primary; the graph theory itself is just the medium. )
The jury however agreed when discussing the mixing

of mathematics and computer science. Faculty pro-mixing
believed it would do wonders for mathematics, and allow
students to get a more realistic picture. This also
encourages the students to become more serious. The 5
color theorem and proof of the lemma concerning planar
graphs on page 35D were good ways of showing different
proof methods; proof by induction and proof by
contradiction. A member of jury B said he introduced a
variety of proofs in the introductory discrete
mathematics course and would like the variety emphasized
in later courses.

The faculty member opposing the combining of
mathematics and computer science did not want to devote
large amounts of class time explaining methods of proof
by induction or proof by contradiction. "We have more
than enough teaching algorithms and the issues
associated with their implementation."

One B juror was cautious. He liked the "idea of
incorporating as much mathematics as possible in the
computer science curriculum because I think we do our
students a serious disservice when we neglect it." He
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was concerned that we don't have enough time to cover 
the analysis of algorithms with respect to the sorting 
algorithms. "The danger here, I think, is that it may 
be too easy to turn a computer science course using 
mathematical ideas into a mathematics course using 
computer programs."

The sourcebook neglected to mention what a greedy 
algorithm is and while stating that Prim's algorithm is 
greedy, it was never stated that Kruskal's algorithm is 
also greedy. The author added this statement to page 
46D of the sourcebook.

Additional topics suggested for the course include 
critical path analysis as an extension of topological 
sort. Computing reachability by exponentiating the 
adjacency matrix is useful in determining whether adding 
an edge to a digraph will complete a cycle and this is 
useful in implementing Kruskal's MCST algorithm. Petri 
nets could be added since they enable concurrent 
processing to be modeled and studied. Another juror 
suggested the problem of finding the longest circuit in 
a graph. In teaching the different traversals of 
graphs, a juror stated the opportunity of discussing the 
merits of breadth first and depth first traversals 
should not be missed.

The jurors agreed with Dale that not much attention 
has been given to the CS 7 Algorithms course, and there 
should be. The students were very enthusiastic about
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graph theory; it is so new to them and they see it as 
practical. A "B" juror stated, "My own experience in 
teaching graph theory is that students find the topic 
extremely interesting and entertaining until they 
realize how complex the problems become."

Responses to the Pedagogical Questions

All but one of the jury members enjoyed the 
historical anecdotes and were able to use them in their 
lectures. The background of the minimum cost spanning 
tree was especially interesting since it is recent 
history. An A jury member criticized that some 
anecdotes were not as germane. "That double and triple 
routes are disallowed on Mother's Day" (page 38D) is 
not directly pertinent to anything we're trying to 
teach." The incomplete anecdotes may misconvey the 
truth. The annals of mathematics contain more than one 
single erroneous proof of the four color problem. By 
mentioning just one proof (Kempe on page 34D), the 
nature of mathematics may be misapprehended. "It is 
harmful for students to suppose that a flawed proof is 
something that just doesn't/can't happen, or, at worst, 
the rare exception." How touch tone dialing is an 
example of the Gray code is unclear.

The question of tracing code provoked the most 
discussion. One B juror stated it is a very effective
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tool; especially for recursion. She stated, "I don't 
think we can be anything but exact, we are looking for 
exact answers." However, she did not think code should 
be passed out to the students immediately? the class 
should develop the code together. Another B juror 
placed "quite a bit" of emphasis on tracing code. A 
third B juror stated that "unfortunately students still 
need a lot of programming experience." The jurors from 
the A group did not trace code in class and did not 
attempt to use the traces from the sourcebook. One 
professor used pseudo-code, basically because it is less 
time consuming and he can cover more algorithms.
Another faculty member believed that presenting "a trace 
to the class relegates the students to bored 
bystanders." He concentrated on the higher level 
algorithmic process, which ends up in pseudo-code and 
believes this is all students need to know to grasp the 
basic idea. He elicited data structures and algorithmic 
steps from the students through pertinent questions, 
such as "How do you know which vertices are adjacent to 
the one just removed?" or "How do you mark a vertex as 
processed ?" The homework sheets proved valuable for 
reinforcing ideas presented in class. One A juror who 
used them for his class would have preferred more 
examples. A B juror suggested there be an answer key to 
the homework problems.

Two A jurors commented that the chart method for



www.manaraa.com

41

Dijkstra's SSSP problem (on p. 47D) was helpful. The 
use of parallel arrays and a simpler implementation of 
graphs for class lectures were considered acceptable as 
good teaching techniques. An A juror stated that 
students should see different implementation strategies. 
As an additional problem, converting a sparse matrix 
(for implementing a graph) to a reduced matrix was 
suggested. Another A juror suggested introducing trees 
earlier in the sourcebook on Day 5 and showing that a 
level by level traversal of a binary tree is a breadth 
first traversal. A member of the B jury requested a 
statement of output for each program. She also thought 
the use of the pitcher problem on page 20D was a good 
technique in explaining the difference between breadth 
first and depth first traversals.

Responses to the Technical Questions

The members of the juries agreed the technical 
aspect of the sourcebook was good. Keeping the notation 
consistent and the lines of code numbered were 
beneficial. For the most part diagrams were clear and 
informative. The faculty members saw the benefits of 
using the graph of the Southern states in class and the 
graph of the Western states for homework. One member of 
Jury A would have liked more examples for classwork and 
homework.

Two readers from Jury B did not like the use of a
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term in the sourcebook previous to its definition. Also 
an index for the sourcebook was requested.

Discussion of the Responses to the Questionnaire

It is unfortunate that members of Jury A did not 
attempt to trace code in class. As a result, it is not 
known whether their students could have benefitted from 
it. In my teaching experience, students have always 
commented that tracing through code has helped them to 
understand the step by step process of an algorithm. It 
also shows students good code to model. Shaw (1990, 
p.10) states, "Moreover, students rarely read good 
programs; it's as if we asked students to write good 
English without reading good prose." It is noteworthy 
that four B jurors support the idea of tracing code in 
class as a good teaching technique.

Just "getting the gist" of an algorithm through 
pseudo code is not enough for the average underclassman. 
The suggestions, from the juries to elicit the 
algorithms from the class through pertinent questions, 
were excellent and have been incorporated into the 
sourcebook on page 42D and page 48D. It was never the 
intention of this investigator for the sourcebook to be 
the lecture notes for the professor. Undoubtedly, if 
the teacher traces code in class, less time is available 
for covering other material. Each professor must know 
the capabilities of his/her students and set the tone of
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the class accordingly. A variety of teaching methods in 
one course proves valuable for the students.

Concerning the mixing of the mathematics and 
computer science, each teacher has his/her own ideas.
One believes he should cover as much material as 
possible; he only expects students to comprehend 40% of 
what he teaches. Hoping that the students learn the 
introductory graph theory topics in their discrete 
mathematics course, another jury member wishes to 
emphasize just algorithms in the computer science 
course. Since a sourcebook is "all things to all 
people", it offers different opportunities for teaching. 
Tucker and Garnick (1990, p.20) state that when theory 
is taught in a separate course as Discrete Mathematics, 
"students rarely draw the strong connections between 
theory and the place within the discipline." With this 
new trend of teaching literature and history in Western 
Civilization courses, combining topics in mathematics 
and computer science seems appropriate.

One B juror was concerned that there was not enough 
time for the analysis of algorithms with respect to the 
sorting algorithms. This was not the case in this 
investigator's experience. The level of difficulty of 
the problems in graph theory was not high and therefore 
not time consuming.

As to the suggestion of introducing trees earlier 
in the sourcebook, trees are taught in the second course
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of a computer science curriculum. A level by level 
traversal of a tree using a queue (without mentioning 
breadth first traversal) is usually a problem to be 
solved during that course. It is now fitting in the 
algorithms course that this type of traversal be called 
breadth first traversal.

The author agreed that the material on 
classification of algorithms and NP completeness was not 
clear. The material was revised for the D edition.

It was decided to leave the definition of a term 
following its use just as it was in the sourcebook. The 
investigator found this to be a valid teaching technique 
(spiral teaching) and it only bothered two jurors.

As it is necessary for computer science faculty to 
stay current in the field, very little time has been 
left for pedagogical discussion. The reviewing of the 
sourcebook by fellow faculty has led to pedagogical 
discussion with colleages that had not been done 
previously. All who have participated are grateful for 
this. A member of the B jury (who has not yet taught an 
algorithms course) intends to use some of the examples 
in his introductory discrete mathematics course to whet 
the students' appetites for the types of problems that 
they will meet as they progress through the computer 
science major.
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CHAPTER V
SUMMARY, CONCLUSIONS, RECOMMENDATIONS

Summary

The rapid growth of computer science has made 
developing curricula difficult for computer science 
educators. "What is computer science" is still being 
asked and answered. There is the question of qualified 
faculty. Less than half of the full time faculty have 
their terminal degree in computer science. Many of the 
faculty, full and part time, teach only lower level or 
specialty courses. The faculty who earn Ph.D.'s in 
Computer Science are usually heavily engaged in 
research. Do they have the time or inclination to be 
involved in computer science education? Results of 
surveys by the Conference Board of Mathematical Sciences 
state that few students are studying discrete 
mathematics courses and fewer are studying a higher 
level discrete structures course.

This is not to say there has been no interest in 
computer science education. The Computing Sciences 
Accreditation Board (CSAB), a joint committee of ACM and 
IEEE Computing Society, has set up criteria on 
curriculum, hardware, and faculty for accreditation 
procedures. SIGCSE, the educational special interest 
group of ACM, sponsors a yearly conference. However,
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many of the topics have centered around software 
engineering and the first two programming courses.
There has been very little discussion of graph theory 
and algorithm complexity. Dale at the '90 SIGCSE 
Symposium asked "Whatever happened to CS7 - the 
Algorithms Course?"

Textbooks for the first two programming courses 
have increased dramatically in number since 1979. This 
has not been true for data structures and algorithms 
textbooks. The texts that contain more theory are 
usually aimed at an upper level undergraduate or 
graduate student. Yet, Pace University's curriculum 
(as suggested by CSAB) requires us to teach an 
algorithms course with theory in the sophomore year. 
Designing efficient algorithms is important to the 
computer scientist. In teaching an algorithm, the 
teacher must be concerned with motivating the student, 
eliciting steps of the process of the algorithm, 
deciding on a good data structure and helping the 
students to improve their ability to transfer problem 
solving methods.

Graph theory is an area of mathematics and computer 
science that is rich with algorithms. Graph theory 
answers many real world problems and has applications in 
telecommunications, biology, engineering, psychology and 
sociology. Graph theory provides good examples for 
teaching time complexity and an introduction to NP
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completeness. The history of graph theory is 
interesting; many of the theorems and algorithms have 
been recently developed. One of the questions discussed 
in chapter three of the dissertation is what should be 
included in the graph theory section of an algorithms 
course.

The purpose of the study was to produce a 
sourcebook for college teachers of computer science, 
especially those with modest mathematical backgrounds, 
on the topics of graph theory and analysis of 
algorithms, and to carry out an evaluation of the source 
book utilizing reviewers who are active college 
teachers.

The sourcebook was evaluated by two juries of 
college teachers. The first jury (A) had the 
opportunity to use the sourcebook in the preparation for 
their lectures for an algorithms course in the spring of 
1990. The second jury (B), who consisted of computer 
science faculty in the New York metropolitan area, 
did a reading of the sourcebook. Both juries responded 
to a questionnaire (Appendix F) that included the 
following questions concerning the sourcebook:

Technical Questions
Is the material clear and precise?
Is the terminology consistent?
Is the numbering of lines of code useful?
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Pedagogical Questions
Is the material interesting and motivating?
Are the teaching techniques used helpful?
How important is code in the teaching of graph theory algorithms?
Do the homework sheets supplement the lesson properly ?
Are there other pedagogical issues that should be addressed?

Theoretical Questions
Does the material help to teach the topic of time complexity?
Is it helpful in the teaching of algorithms?
Do you like the mixing of mathematics with computer science?
Are the topics developed in the correct order?
Are there topics that should be excluded?
Are there topics missing?

Included in the investigator's research were 
reviews of computer science education papers, popular 
data structures and algorithms textbooks, discrete 
mathematics textbooks, theoretical computer science 
textbooks, and graph theory textbooks. The more recent 
papers on computer science curriculum, Denning (1988) 
and Tucker and Garnick (1990), encourage the teaching of 
discrete mathematics in computer science courses.
Data structures textbooks devote very little space to 
graph theory algorithms. Most of the algorithms 
textbooks were written for an upper level undergraduate



www.manaraa.com

49

student with a good mathematics background. The
discrete mathematics textbooks and graph theory
textbooks do not show the connection between mathematics
and computer science. The theoretical computer science
textbooks offer insight into time complexity and NP
completeness.

One of the members of Jury A offers a good
description of a sourcebook.

A sourcebook is supposed to give help to teachers regardless of the textbook they use, the topics they treat, the order in which topics are covered, and their underlying instructional objectives.A sourcebook ought to offer:* a "brush-up" for the instructor who is only 
marginally conversant with the ideas and algorithms that must be taught - a place to turn for down-to- earth explanation and help* excellent methods for teaching things the instructor has not had experience covering to a class ( or has not had good success with)* good exercises for class use, problems for homework, programming assignment possibilities, and suggestions for larger projects* unusual anecdotes, sidelights, easy-to-grasp applications, and things the instructor can use to 
generate flashes of insight; maybe, even jokes, riddles, and puzzles
* a table of contents and index for easy access of definitions, conceptual discussions, algorithms, and exercises; maybe even a glossary* a "key" to the literature; textbooks, popular articles, etcetera to which the instructor can turn for more extensive and alternate treatments of each idea and algorithm

The sourcebook was developed after the investigator 
had taught graph theory in algorithms courses several 
times. In contrast to many textbooks, the definitions 
appear in the sourcebook when needed. Topics, such as
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isomorphism, planar graphs, Euler and Hamilton circuits, 
and graph coloring, were presented to the students 
before the teaching of Kruskal's and Prim's minimum cost 
spanning tree algorithms and Dijkstra's shortest path 
algorithms. It gave the students a more comprehensive 
view of graph theory. The data structures for graphs 
were presented early in the curriculum for the students 
to begin program assignments early. The union of 
mathematics and computer science enables the students to 
form a more realistic view of mathematics. The chance 
to use different types of proofs in the sourcebook was 
beneficial to the students' total education.

The curriculum was planned with the hope for 
interaction between the teacher and the students. The 
students should be given the opportunity to discover the 
algorithms themselves. Homework sheets were developed 
to give the students more practice; something that this 
investigator's previous students had requested. The 
programs for certain algorithms, breadth and depth first 
traversals, Prim's minimum cost spanning tree algorithm, 
Dijkstra's shortest path algorithm and topological sort 
were coded in Turbo Pascal. (Appendix E) The sourcebook 
went through several revisions. The A version was 
written before the investigator taught the course in the 
fall semester of 1989. The B version contained the 
corrections as the result of that teaching. The C 
version with homework sheets, program assignment,
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questionnaire and disk with the solution to the program 
assignment in Turbo Pascal (Appendix E) were distributed 
to Jury A for preparing their lectures for the spring 
semester of 1990. With comments from both juries and 
readers, revisions were made for the final D version.

Juries A and B responded to the questionnaire. 
(Appendix F) With regard to the theoretical questions, 
there was some discussion on teaching the introductory 
ideas of graph theory - isomorphism, planar graphs, and 
graph coloring - in a computer science course. All jury 
members except one supported the idea of teaching these 
topics in a computer science algorithms course. The one 
professor asserted these topics belonged in a discrete 
mathematics course since he needed the time to design 
algorithms and fashion data structures. The same 
philosophy held true among the jury members when 
questioned whether mathematics should be mixed with 
computer science. Also, there was the question whether 
time should be spent on different methods of proof such 
as the proof by induction for the 5 Color Theorem and 
the proof by contradiction for the lemma concerning 
planar graphs on page 35D. A member of jury B had 
introduced a variety of proofs in an introductory 
discrete mathematics course and appreciates the variety 
emphasized in later courses. Another professor skipped 
many of the proofs but was able to cover more topics in 
graph theory: Heuristic colorings,matching theory,
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flows/networks, and Max Flow Min Cut Theorem. The 
material on NP completeness and classification of 
algorithms was not satisfactory to the juries, so with 
their suggestions, this section was revised for the 
final D edition of the sourcebook.

The responses to the pedagogical questions included 
the questioning of using incomplete anecdotes in the 
sourcebook. However, most jury members agreed the use of 
anecdotes was a good pedagogical device. The three 
members of jury A did not trace code during class time; 
they leave their algorithms in pseudo code all of the 
time. A member of Jury B thinks it is necessary to be 
exact with the students ( that is, tracing code in 
class) only after the algorithm has been developed by 
the class. The four B jurors did support the idea of 
tracing code in class.

With regard to the technical aspect of the source 
book, most members of the juries agreed the notation was 
consistent and the material clear, and a B juror states 
consistency is always a plus. Two readers from Jury B 
objected to the use of a term before it was clearly 
defined. However, the other jury members agreed with the 
spiral development in the teaching of the definitions.

Conclusions
The results of this study have led the investigator 

to make several conclusions.
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1. The sourcebook is beneficial for faculty to explore 
even though they may not use all of the ideas in their 
own algorithms course. It gives the opportunity for 
faculty to reflect and discuss pedagogy. The sourcebook 
acts as a brush up for the computer science instructor 
who is not as well versed in discrete mathematics. The 
examples are clear and easily understood. The proofs 
are easy to follow and at a level presentable for the 
undergraduate student. The supplementary homeworks give 
the students a chance to review and offer the 
opportunity to explore and develop ideas on their own.

2. Differences among faculty exist in the choice of 
content for the graph theory component of the computer 
science algorithms course. At least one jury member 
insisted that the introductory topics in graph theory 
belong in a discrete mathematics course. However, there 
were several jury members who enjoyed combining the 
mathematics and computer science aspects of graph 
theory. This is so because the computing offers real 
world applications for mathematics and the mathematics 
offers theoretical support in the teaching of computer 
science.

3. It is difficult for faculty to implement methods of 
teaching other than their own. The three members of 
jury A who used the sourcebook to prepare their lectures
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did not trace code in class. While the members from 
jury A were self-assured about their teaching methods, a 
need may arise in the future for a different method of 
teaching when dealing with a particular group of 
students. The sourcebook offers them a solid 
pedagogical approach. The members of jury B saw the 
need for tracing code in class, as many of their 
students are not adept in programming. The guided 
approach of tracing code develops an essential 
characteristic of strong programmers.

4. Teaching faculty learned the topics of graph theory 
in different ways: mathematics programs, computer 
science programs, sociology programs, or self-taught.
If the need arises, the sourcebook can be used as the 
"putty to fill some of the gaps" in the background of 
computer science faculty. The bibliography offers a 
wide range of references.

5. The teaching of efficiency of algorithms and NP 
completeness is difficult. It may be a topic similar to 
recursion that should be introduced in one course but 
reviewed in several other courses. Graph theory offers 
examples in NP completeness and classification of 
algorithms. Faculty should not waste the opportunity to 
introduce these topics at this time.
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Recommendations and Implications 
The investigator makes several recommendations 

after studying the current research, completing the 
source book, having the source book used and evaluated 
by teaching faculty, and discussing the topic with 
colleagues.

1. Sourcebooks are a rich source of information from 
which faculty can choose material for their lectures. 
Sourcebooks are an aid in clarifying curriculum for new 
and adjunct faculty. Since computer science curriculum 
is still in its infant stage, sourcebooks on other 
topics should be written.

2. Even though faculty in computer science departments 
are always trying to keep current with new discoveries 
and technology, it is necessary for CS faculty to set 
aside time for discussing pedagogy. ACM's SIGCSE should 
encourage presentations on the teaching of algorithms at 
its annual symposium. Faculty should employ various 
teaching methods in their lectures.

3. Curriculum topics for the earlier programming and 
mathematics courses should be more clearly established 
in order that students are better prepared and topics 
are not repeated without cause.
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4. The question of whether the topics in discrete 
mathematics needed for graph theory should be taught
in mathematics courses or computer science courses must 
be answered. In most schools this would mean 
cooperation between the mathematics and computer science 
departments.

5. Experiments testing different teaching techniques 
should be developed to test students' learning of 
algorithms. For example, is an algorithm better 
understood by writing executable code rather than 
leaving a solution in pseudo code?

6. Current computer science education literature has 
recommended a laboratory component of computer science 
courses. (Denning, 1988). Experimental type program 
assignments for graph theory should be developed, i.e. 
testing whether one data structure is more efficient 
than another or whether one algorithm is quicker.
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APPENDIX A 

TOPICS IN THE SOURCEBOOK

1. Preliminary Definitions...............  ID
2. Isomorphism............................  2D
3. Computer representation of graphs......  6DAdjacency matrix....................  7DAdjacency list......................  8DEdge adjacency.....................  10D
4. Planar graphs......................... 10D

Kuratowski's Theorem............... 12D
5. Euler's Theorem on RegionsR= E-V+2...........................  15D
6. Euler paths and circuits.............  17D
7. Traversing graphs..................... 20DBreadth first traversal...........  2 IDDepth first traversal.............. 25D
8. Hamilton circuit...................... 28D
9. Gray code............................. 3 ID
10. Graph coloring........................ 33DProof of 5 Color Theorem..........  35D
11. Introduction to Network type problems. 37D
12. Minimum spanning treeKruskal's method of solution  40DPrim's method of solution........  4ID
13. Single Source Shortest PathDijkstra' s Algorithm.............. 47D
14. All pairs shortest pathFloyd's Algorithm................. 52D
15. Topological sort.....................  54D
16. Efficiency and classificaton ofalgorithms.......................  57D
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APPENDIX B 
SOURCE BOOK

DAY 1
Introduce some problems in graph theory.
1. Is it possible in a group of 5 people that eachperson has exactly 3 friends? The picture drawn to determine whether there is a solution is a graph.

Use the trial and error method. What happens if there are 6 or 7 people in the group?

2. What is the shortest path from City Hall to the Court House?
City\ Hal

e6urt House
High School 30

50 10 60Tennis * Courts
Library20

Graph theory will help us to answer such questions with 
the use of theorems and algorithms.

_ ID _
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A graph G = (V,E) consists of a set V of vertices and a set E of edges. Vertices are also called nodes and points while edges are also called arcs, lines, and branches. Each edge in E connects two distinct vertices in V. Harary states "We believe that uniformity in graphical terminology will never be attained, and is not necessarily desirable." (Harary, 1972, p.8)
The vertices in the graphs below are represented by dots and the edges by lines.
Graph 1 Graph 2

In graph 1, V = {A,B,C,D,E} with (A, B) , (A, C) ,
adjacent since there exists an edge (A,B) connecting them. The edge (B,D) is incident to vertex B since B is an endpoint of the edge (B,D). Capital letters are used throughout this text for vertices. Graph 1 is an example of a connected graph while Graph 2 is not, since there is no path between A and C.
Does the drawing of graph 1 above differ in any way from Graph 3? 1

Graph 3

Two graphs can depict the same ideas if we can match up each edge and vertex preserving adjacency.
A 4 B 1
C 5 and (A,B) corresponds with (4,1)D 2 (B,C) corresponds with (1,5)E 3 (B,D) corresponds with (1,2)(D,E) corresponds with (2,3) (A,C) corresponds with (4,5)

What methods should be used to determine if the graphs are isomorphic? Two graphs G and H are isomorphic if there exists a one-to-one correspondence between their set of vertices which preserves adjacency.

_ 2D
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An example of one-to-one correspondence which does not preserve adjacency may need to be given.
Idea 1 In the graphs 1 and 3, the number of vertices are equal. Since vertices 1 and B each have 3 edges incident on them, those two vertices should correspond. The degree of a vertex is the number of edges in the graph that are incident to that vertex. Therefore in an isomorphism, vertices with the same degree must correspond.
Why is it important to determine if two graphs are isomorphic? Chemical researchers keep a dictionary of graphs of all known molecular compounds. If the chemist has discovered a "new" compound, he/she must test the graph theoretic structure against the set of known compounds. Also, in designing efficient electrical circuits, engineers use isomorphic graphs. If a problem has been solved for an isomorphic network, the engineer will save time and money by using this solution.(Tucker,1984)
Are these two graphs isomorphic?Graph 4 Graph 5

Each graph has 8 vertices, 4 with degree 2, 4 with degree 3. But it is difficult to find a matching. In Graph 4, there exists a subgraph of 4 vertices each with degree 3, where there is no such subgraph in graph 5.
A subgraph G' of G=(V,E) is a graph G' = (V',E') where V 1 £  V and E'£L E where each edge in E is incident with vertices in V'.
Theorem If two graphs are isomorphic, their corresponding collections of subgraphs are isomorphic.
Since a statement and its contrapositive always hold the same truth value, the contrapositive for the above statement is very helpful. Knowing this fact is useful in answering questions on SAT or GRE exams.

- 3D -
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Review on truth of logic statements Statement If x = 4, then x a*= 16.Converse If x = 16, then x = 4.Inverse If x <> 4, then x^-o 16.Contrapositive If x ^ o  16, then x <> 4.The converse and inverse are not always true, yet the statements and its contrapositive always have the same truth value.
Form the contrapositive of the theorem.
Idea 2 If a subgraph of graph A is not isomorphic to any subgraph of graph B, then graph A is not isomorphic to graph B.Are these graphs isomorphic? (Example from Tucker,1984). Inform the students that vertices occur only where points are labelled. Intersections of two 
edges do not necessarily constitute a vertex.

Graph 6

G

F

Graph 7

6

Since each graph has 14 edges, 7 vertices with degree 4, we try to construct the isomorphism. Matching vertex A with 1, let us look at the subgraphs formed by A and 
1. One subgraph is the path A F G B C. (a set of vertices all adjacent to A) A path from 1 is 1 7 4 52 (a set of vertices all adjacent to 1) The matching must make the two path subgraphs isomorphic. F and C must match with either 7 or 2. Then G and B match with 4 and 5.

A 1B 5C 2D E
F 7G 4

D,E and 3,6 are the vertices not matched. Since D is adjacent to B and not A and 6 is adjacent to 5 but not to 1, match D with 6 and E with 3.

_ 4D _
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DAY 2
Idea 3 Another method for determining if two graphs are isomorphic is useful when the graph is dense rather than sparse. A dense graph has more pairs of vertices joined by edges than pairs not joined by edges. The complements of each graph will have fewer edges and be simpler to analyze.
A complement is a graph that joins every two vertices by an edge that does not exist in the original graph and removes the edges of the original graph.
Draw the complements of Graphs 6 and 7.Graph 9

7

6

Is there an isomorphism between graphs 8 and 9?Notice in graph 8, there exists a twisted circuit that passes through every vertex. A D G C F B E A .  A circuit is a path whose point of origin is also its final point. There also exists a circuit in graph 9, 1 3  5 7 2 4 6 1. That correspondence gives an isomorphism between the 2 graphs.
What happens if we can't use any of these methods? (Ideas 1,2 and 3) To prove that 2 graphs are not isomorphic, we must show that some vertex in graph A cannot correspond to any vertex in graph B. If each graph has n vertices, the exhaustive search would have n 

possibilities to match the first vertex in graph A, n-1 possibilities to match the second vertex in graph A, n-2 possibilities to match the third vertex , etc. or n!Even if the number of vertices is only 25,25! = 15,511,210,043,330,985,984,000,000.

With our present theorems and definitions, we have enough information to prove a theorem necessary to answer the first question in the beginning of the chapter. Is it possible to have a group of 5,6,or 7 people in a group such that each person knows exactly 3 
others?

“ 5D ~
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What is the relationship between the sum of the degrees of all vertices and the number of edges?

degrees (V I. ) = 2 • Et'l
Theorem The sum of degrees of all the vertices is equalto twice the number of edges.

This is shown since each edge contributes acount of 2 units for the sum degrees.
What does this say about the number of vertices with odd degree in a graph?Since the sum of degrees of all the vertices must be even (2E), and the sum of degrees of vertices with even degree is even ( an even number times any number is even), what must be left is even.
Corr. The number of vertices of odd degree must beeven.

In finding a solution to our problem, if a graph has 5 vertices, the sum of the degrees must be even. So 5 vertices cannot each have degree of 3. The same would hold true for 7 vertices. This theorem leaves open the 
possibility for a group of 6 people to have exactly 3 friends.
Computer representation of graphs

What is necessary to represent a graph for the computer? it should be elicited from the students that the vertices and the edges are needed; the placement of vertices is not significant since any two graph drawings are isomorphic.
The following is a graph of the southeastern section of the United States showing which states have common borders.

Sum of degrees Edges
10
10282814

5 Graph 15 Graph 214 Graph 614 Graph 77 Graph 8

Graph 10

Alabama A
B Florida

D South Carolina
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If we represent every state by a letter, with which data structure are we familiar to show that two states have a common border? A two dimensional matrix called the adjacency matrix is appropriate. A pedagogical approach is to give this partially correct matrix and ask the 
students to check the validity. Should it be symmetric? A B C D E F G H  A 0 1 0 0 0 0 1 0B 1 0 1 0 0 0 0 0C 0 1 0 1 0 0 0 0D 0 0 0 0 1 1 1 0E 1 0 1 1 0 1 1 0F 0 0 0 0 1 0 1 1G 1 0 0 0 1 1 0 1H 0 0 0 0 0 1 1 0The matrix has the property Graph[i,j] = 1 iff the edge (i,j) is in the graph and Graph[i,j] = 0 if there is no such edge. The space needed to represent the graph is V bits. The matrix is symmetrical around the 
diagonal, and for an undirected graph it is necessary to save only the upper triangle for large graphs. In undirected graphs, an edge i,j may also be referred to by j,i.
In Pascal, we are allowed to subscript the array by characters, we have chosen to do that to keep our picture graphs consistent with the type declarations.
What type do we need for the adjacency matrix? graphtype = array[,A ,..,H','A,..,H ,3 of boolean. And if there is pertinent information to be kept about each vertex -
vertextype = array[1..vertices] of vertexrecord.
Disadvantages to this declaration must be discussed.What if the size of our graph varies? What if the size is greater than 26?
How do we read into the adjacency matrix?Each edge is read in by reading in the name of its endpoints. If we are reading in names of cities or states, they must be converted to a character subscript.

Aside: In setting up the graph for a program, how wouldone read in the name of a state and get a letter to correspond to it? Suggestion: Set up a table - anarray of strings indexed by characters,'A' to ' Z'. In function Subscript,each time a new state is read in(one that is not in the table), simply add it to the table subscripted by the next available character,and return that character. If the state is already in the table, have Function Subscript return the character that is the 
index to that string.

7D -
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Procedure Read( var graph: graphtype);Var i,j:char ?
vertexone, vertextwo:stringtype;{names of verticese.g. cities, states, etc.}begin
For i: = 'A' to 'H' do for j:= 'A' to 'H' do Graph[i,j]:= false;
for number:= 1 to edges do beginreadln(vertexone, vertextwo); i:= subscript(vertexone); j:= subscript(vertextwo); graph[i,j] := true; graph[j,i]:= true; end;end;

The nested for do loop requires 0(n^*) time where n is the number of vertices. Are there any disadvantages in using an adjacency matrix to represent a graph? For 
sparse graphs, it is not worthwhile to keep track of all the "zero" edges.
By using linked lists for the representation of the graph, operations such as finding adjacent vertices, adding a vertex, and determining the number of edges given a graph will take considerably less time. Notice, adding or deleting an edge between two existing vertices takes less time with the adjacency matrix. To keep the linked lists attached an array of pointers (a Comb) is sufficient.
Graph [A] — ^ Ib I -k 1c  I 1e I 44 [G I nil
Graph [B]— ^ IA I -14  Ic I nill
Graph[C] — ^ lA I 4^ Ib I 4 4 fP~ I 44 IE I nill
Graph[D] — ^ Ic I nil|
Graph[E] — ^ Ia I 1C 1 - £ [ F T ^ 1 G  InlT! 
Graph[F] —> EH3> lg i -+} Errant
Graph[G] — > Ia |-|-} IE I I F T " ^  tH I ni7~l 
Graph [H] — > If I 4 ^ (TTnTIl
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The data structure for this in Pascal is an array of pointers
Type ptr = * node;node = record vertex:char; link;ptr; end;

graphtype= array['A'..'Z'] of ptr;Var temp:ptr;Reading into an adjacency list.
For i:= 'A' to 'H’ do 

graphfi]:=nil;For number := 1 to edges do (or while not eof do) beginreadln(vertexone, vertextwo);i:= subscipt(vertexone);j:= subscript(vertextwo);new(temp);temp *.vertex;=j;temp~.link:= graph[i];graph[i]:=temp;new(temp);temp *.vertex;=i;temp *.1ink:=graph[j];graph[j]:= temp;end
Determining the total number of edges in an adjacency matrix would be Ofn^) where in an adjacency list,the time would be 0(n + e), n being the number of vertices and e the number of edges.

If there is information to keep about each vertex, the data structure may be changed to an array of nodes with several fields where the last field is a pointer to the first element in the linked list.
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A third implementation for the graph is an Edge adjacency list where each edge is listed only once but there are two extra fields in each node, one keeping track of the second vertex in an edge and the other pointer is part of a linked list where the second field 
is always the second vertex.
Type ptr= ‘node?node = record 

f irstvertex,secondvertex:char; f irst1ink,secondlink:ptr ?
Ia I 'ITf̂ 'hrr b I '’pp* IaT e1 /t>b>
Ic I I D I '  Lc | E W
i o V ’T

|e I -n -rTBJ f ib IG w  
if i i 'tT^ iF i g~î t

3

Planar graphs DAY 3

It is cheaper to produce circuit boards if the circuits can be placed on a flat surface, with wires 
crossing only at connection points. There is a need to make graphs planar.

A former graduate student explained how circuits are made on the plastic circuit board with the copper 
etching process. Take a photographic image of the electrical network and project it onto the copper plate. Where there is no light the copper remains; the rest of the copper is etched away by acid. The copper remaining forms a graph. It is necessary for the electrical 
network to be planar in order for this to work and it is a cost effective method to produce circuit boards. It is fine electronically to use insulated wires to make the circuit in a non-planar fashion but it is very expensive to do so.

- 10D -
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This graph has 2 edges crossing in the plane.Graph 11
The graph is planar if it can be drawn on paper in such a way that no two edges cross.

Graph 12
B

We will be looking at systematic ways to draw graphs on a plane without the edges crossing.
Graph 13 This graph is planar.It is called a complete graph since each vertex is adjacent to every 

other vertex. This is the K3 graph.

Is the K4 graph planar? (See graph 12)

Is the K5 complete graph planar?Graph 14

B

Graph 15

E
Which edge is missing? The best way to tell is to find the degree of each vertex.

It appears that it can not be drawn as a planar graph. Later discussion will prove such.
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A problem. There are 3 houses to be built next to each other on a block, each house to be connected to a well, 
an oil tank, and a gas tank. Can the connections be made so that one pipe does not cross over the other? What would the graph look like?

Graph 1

GasWater

House 3House ]

Oil

House 2

No) cannot get any water.
This is a K 3,3 graph, an example of a bipartitegraph. A bipartite graph consists of 2 distinct sets where edges of the graph are formed by connecting eachpoint in the first set with a point in the second set.The English puzzle maker Henry Ernest Dudeney thought of this K 3,3 problem in 1917.
Gibbons (1985) states that there are a number of algorithms for testing planarity. Hopcroft and Tarjan developed an algorithm in 0(n) time. Gibbons shows a 

simpler yet efficient algorithm in his text due to Demoucron, Malgrange and Pertuiset.
In Frenkel's interview with Tarjan after the Turing Award Lecture, Tarjan responds "Yes the right representation of the input turns out to be very 

important in planarity testing because planar graphs are sparse." (Frenkel, 1987, p. 215) Papers in literature based graph algorithms on the adjacency matrix, but to check each entry , you are checking a quadratic size representation where many of the elements are zeroes. This drove computer scientists to use list based representation of graphs.

What are some ways of determining if a graph is planar?
Theorem (Kuratowski1s) A graph is planar iff it does not contain a K5 or K3,3 configuration.(The word contain has an additional meaning besides the observation of a K5 or K 3,3 configuration. There is a note to follow on homeomorphic graphs.)

- 12D-
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Graph 17

K3,3 exists in it; so it is not planar.ABC - DEF

Problem Is this graph planar?
Graph 18 

A. B C

Try as you may, it does not contain the K3,3.
One method used to find if a graph is planar is to construct the longest circuit possible, A H D G B E C F  on graph 19, and then draw as many edges inside. If it is not possible to draw an edge on the inside, then draw the edge on the outside.

Graph 19

B

Which edges are missing?(A,G) , (F,B) , (H,C) ,
(D, E)

The first two edges may be placed on the inside, while the last two edges may be drawn on the outside.

Conclusion: The graph is a planar graph.

- 13D -
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(Aside: Is Petersen's graph planar? from Grimaldi p.448) Graph 20A Graph 2OB

E

Kuratowski's theorem actually states that a graph is not planar iff it does not contain a subgraph that is homeomorphic to either K5 or K3,3. Two graphs G and H are homeomorphic if H can be obtained from G by the insertion or deletion of vertices of degree 2. See Grimaldi, 1985.
Of the 10 vertices and 15 edges in Graph 20A, the subgraph 2OB has the original 10 vertices and 13 edges minus the edges CH and GI. Graph 20 B provides a subgraph of the Petersen graph (20A) that is homeomorphic to K 3,3.The deletion of vertices C,G,H, and I leaves the K3,3.

The K4 graph can be drawn in this planar fashion. 
Graph 21

Are there any other planar drawings? 
Graph 22

1
Graph 23

The graph is partitioned into regions (faces). No matter how many different isomorphic ways a planar graph 
is drawn the number of regions remains the same.

_ 14D _
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The students may have guessed at Euler's (pronounced oiler) formula from the homework. It is 
surprising that the simple formula was not discovered by the Greeks. They had a great interest in mathematical properties of the regular polyhedra. Biggs, Lloyd and Wilson (1976) wonder if the discovery were lost or if the formula were missed because the Greeks concerned themselves with measurement, length, angles and areas.It wasn't until 1752 that Euler discusses R = E-V+2 in a letter to his friend.
Euler's Theorem If G is connected planar graph, then R = E - V + 2. The proof is a nice example of induction on E.
1. Initial case E = 1

Graph 24 

AR=2,E=1, V=1 
2 =  1- 1+2

Graph 25

R=1, E=1,V=2 l=l-2+2
Assume the result is true for all connected planar graphs with k edges R = E-V+2
Prove it true for E = k + 1 edges Two casesCase 1 Add one edge(x,y) between 2 existing vertices.This adds one more edge to the graph and one more region. R + l = E + l  - V + 2  and the equality still holds.Graph 26

Case 2 Add an edge (x,y) where x is in the graph, and y was not in the graph previously. The number of regions remains the same, but the number of vertices and edges are increased by 1 so the equality is preserved.
Graph 27

- 15D _
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Aside: For the astute student, it is necessary to pointout that Graph 24 and any multigraphs (2 or more edges between 2 vertices) are extensions of the original definition of graph.

Problem How many regions would there be in a planar graph if there were 12 vertices each with degree 4? We need to know the number of edges. By a previous theorem, on page 6D, the sum of degrees = 2- E
therefore, 12 • 4 = 2*E24 = E

R = 24 - 12 + 2 = 14

DAY 4

Euler's theorem has the following corollary that may be used to show a graph is non-planar.

Corollary In a connected planar graph, with E >= 3,E <= 3 * V -6.
The Proof - First, define the degree of a region as the number of edges that bound the region.

Graph 28 inside and outside region each have 4 edges

Graph 29 degree of region k is 10, count that edge twice

Since E >= 3, the smallest degree a region can have is3. If there are R regions and each has a minimum degree of 3, then 3 R <= degrees of all regions.

- 16D -
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Graph 30

How many regions are there? Is there any relationship between the regions and the number of edges? The sum of 
the degees of the regions is 20 and the number of edges is 10. Therefore,the sum of the degrees of all regions
is ecpial to 2E, since the sum counts each edge twice(inside and outside) . Hence, 3R <= 2E.And from Euler's theorem R = E - V + 2.

3 (E-V+2) <= 2 E
3E - 3V + 6 <= 2 EE <= 3V - 6

We use this corollary to prove that K5 is not planar. Since a statement and its contrapositive always hold the same truth value, the contrapositive of the corollary is also true. In a connected graph if E > 3V - 6, then the graph is not planar.
In the K5 complete graph E = 10, V = 5.10 > 3 • 5 - 610 > 9, so the graph is not planar.

Note the converse of the corollary is not true. If 
E <= 3V - 6, the connected graph is planar.
The K3,3 graph has E = 9 , V = 6 .  9 < =  3 * 6 - 6  which istrue, but the K3,3, graph is not planar.

Covering Graphs
In 1736, a mathematician Leonhard Euler was presented with the following problem. In the city of Konigsberg in East Prussia, there were seven bridges in the Pregel River connecting 2 islands to each other and 

mainland. The townspeople wondered if they could begin their Sunday walks from a starting point, cross each bridge exactly once and return to the point of origin. It didn't matter that you walked across an island several times.
Graph 31

17D-
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A dual graph is formed by allowing each piece of land to be a vertex and a bridge to be an edge.
Graph 32

This graph is called a multigraph, since there are 2 edges between 2 adjacent vertices. Multigraphs are useful in the study of chemical bonding.
How would the implementation for our graph change for a multigraph since there may be two edges between 2 vertices? The adjacency matrix could be a two dimensional array of integers where the integer values could be the number of edges. For the adjacency list, an extra field could be held in each node.

In the problem posed to Euler, no circuit can be 
formed that traverses all the edges in the graph exactly once and returns to the starting point.
What if anything added to the graph would give an Euler circuit? Today an eighth bridge between the 2 islands exist and forms an Euler path. The Euler path traverses each edge exactly once but does not necessarily return to the point of origin.The difficult part about forming an Euler circuit in the Seven Bridges problem is the 3 edges on one 
vertex.
In graph 33, can an Euler circuit be formed?.Can you start at a point and continue following a path without lifting your pencil and return to the point of origin? (As on the placemats of Howard Johnson's Restaurants)
Graph 33

Notice that 4 vertices have odd degree. **Students will have difficulty, since there is no Euler circuit.

18D
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Can an Euler circuit be given for this graph? Graph 34
5

4

7
The numeration (1,2,3,4,5,6,7) demonstrates a possible path.

Euler1s Theorem: If G is an undirected or multigraph,
then it has an Euler circuit iff G is connected and every vertex in G has even degree.

for this graph?

With just 2 vertices of odd degree, you can have an Euler path.

Corollary. If G is an undirected or multigraph, the graph has an Euler path iff it is connected and has 2 vertices of odd degree.The Euler path begins at one of the vertices of odd 
degree and ends at the other.Gibbons (1985) gives pseudo code for finding Euler circuits in 0(e) time.Fleury designed an algorithm to determine Euler paths and circuits. In building an Euler path, never choose an edge whose erasure will disconnect the resulting graph of remaining edges.

Graph 36 (example from Tucker, 1984, p.53)

Can an Euler circuit be given Graph 35
2

8
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As you mark an edge erase it, AB(1), BE(2), ED(3), DA could not be done now, DC(4), CI(5), IJ(6),( Drawing JD 
and DA at this time would leave remaining edges,) JN(7), NO(8), 0K(9), KL(10), LH(ll), HM(12), MG(13), GH(14),HF(15), FE(16), EK(17), KJ(18), JD(19), DA(20).

The Chinese Postman Problem finds the shortest tour such that each edge of a graph is traversed at least once. (Euler circuits traverse every edge exactly once). It is the problem faced by a postman who must deliver 
mail along each edge of a graph and return to its starting point.

Traversing Graphs
Every time we learn a new data structure, we discuss which operations to use. We traversed binary trees using preorder, inorder and postorder methods. Now how will we traverse the undirected graph? Is there a starting point? If given a starting point, which state should we visit next?

Graph 37 (the Southern states)

The following is a nice example given for homework 
that aids in understanding the difference between breadth first and depth first traversal.Suppose we are given 3 pitchers of size 10 quarts,7 quarts, and 4 quarts. Initially the 10 quart pitcher is full and the other 2 are empty. We can pour from one pitcher into another pouring until the receiving pitcher is full or the pouring pitcher is empty. Is there a way to pour among pitchers to obtain exactly 2 quarts in the 7 or 4 quart pitcher. If so, find a minimum sequence of pourings to get two quarts. (Tucker, 1984)
A student's first approach is usually a depth first 
search. Use a three parameter point to show the amount in each pitcher. (4,7,10) are the possibilities

The students may not realize the next step, and see a 
problem with using a depth first search.

DAY 5

D South Carolina

B Florida

(0,0,10) (4,6,0) (4,0,6) (0,4,6) (0,7,3)(3,7,0) (4,6,0) (0,6,4)
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But a breadth first approach guarantees an answer and also finds the minimum sequence.

A breadth first traversal visits all successors of a visible node before visiting any successors of those successors. (Tenenbaum and Augenstein,1986)
From graph 37, the breadth first search from Florida may be Florida, Georgia, Alabama, South Carolina, Tennessee, Mississippi, Arkansas, Louisiana.
There are different but correct breadth and depth first traversals. It will depend on how the adjacency list was created and how the code is written. Depending on 
the class, there may be a need to show the breadth first and depth first searches for several graphs.
Relative merits of depth-first search and breadth-first search should be mentioned. Depth-first is more efficient when there are many roughly equally long paths from the start state to goal state, and no path leads off into a tremendously long, futile search. Breadth- first search is always safer when there is a danger of long, futile pathways in the lower reaches of the exhaustive search tree; and it is more efficient when the shortest path from start state to goal state is 
sought. If you use our original adjacency list (p.8D)
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for the southern states, a stack will give you a correct breadth first traversal. This of course will not work all the time.
Use Graph 4 and its adjaceny list to demonstrate that the FIFO queue is needed for breadth first traversals.
A

H
A breadth first traversal would be ABFHCDGE. How do we know what vertices to visit? (Answer: Use the adjaceny 
list to know the adjacent vertices.) After we visit B,F,H how do we get to C? We have to go back to B and get any of its adjacent vertices. How do we get back to B? How shall we hold it in memory? If a student responds stack, demonstrate why the stack does not work. Which abstract data type is appropriate? We must go back to the first one in. FIFO - The fifo queue! 
Demonstrate how the queue works "manually".

We need the adjacency list for graph 4.
Graph ( T

b ] — ^  n r
3:^ I F H 1 nil "I

nil
C] — } 1 B I -\-A  lH I nil 1
D] — » L E 1 - M > I F Inill
E] — ^ [ D j | G Inil f
F3 — ^ La  | I d | -1-̂  [g j nii~T
G1 — E 1 If 1 4 ->1h Inil I
H] L g I I c l  4 ^  I A Inil I

How will we remember which nodes we visited?
An extra array called marked is kept which will order the vertices when visited. Initially the marked array will be given the value of zero. When the element is put on the queue, it will be marked with a -1 and when visited the marked element will be given a positive 

integer.

- 22D ~



www.manaraa.com

87

1 Procedure Breadthfirstsearch(graph:graphtype;point:char);2 Type markedtype = array['A '..'Z'] of integer;3 Var id:integer?456

89
10 
11 
121314
1516
171819
20 
21 
2223242526
272829303132
33

marked:markedtype? queue:queuetype; k:char;
Procedure visit(graph:graphtype?

var marked:markedtype? point:char)?Var temp:ptr? begin
enqueue(queue, point); while not emptyqueue(queue) do beginremove(queue, point)? id:= id*-}- 1? marked(point) := id? 

temp:= graph[point]? while temp <> nil do 
’beginif marked (temp*.vertex]= 0 then .beginenqueue(queue, temp*.vertex)? marked[temp*.vertex):= -1? end;temp:= temp *.1ink ? end; end;end;

begin id:=0 ?clearqueue(queue); for k:= 'A' to 'H' do marked[k):= 0? visit (graph, marked, point)? 
end;
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A trace table for Breadth first search from 'A'
temp point*B 'A'~F Queue"H
nil rear front'A 'B'___ ____________“C I E G D C H F B Anil ----------------“A 'F'‘D ~G 
nil“G 'H'
nil*B 'C'*H nil*E 'D'"F 
nil“E 'G'*F "H nil~D 'E'~G 
nil

What changes in the code if the breadth first traversal begins from a vertex other than 'A'?What if there are more than 26 vertices in the graph? 
What if the graph isn't connected? As in graph 2?

Change line 32 to For k:= 'A' to 'H' toif marked [k] = 0
then visit(graph, marked,k);

Time complexity
In breadth first traversal, we are actually visiting every vertex and each of its edges. In our 

adjacency list implementation of graphs, we may be visiting each node twice though that doesn't have any effect on the order of the complexity. The time 
complexity is then 0(n + e), where n is the number of vertices and e, the number of edges. Since usually the number of edges is greater, we may say the efficiency of the bfs algorithms is 0(e).If the adjaceny matrix was used, we would have traversed the entire matrix and the algorithm would be 0 ( n*).

Marked [A] = 0, 1 ID[B] = ̂  -X 2 0[C] = ̂  5 1
[D] = t) -1 6 2[E] = S'- ̂  8 3
[F] = ̂  -X 3 4[G] =13-1 7 5[H] = 13L -lx 4 67

8
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DAY 6

Depth First Traversal
In graph 37,what is the depth first traversal from

Florida? from Louisiana?Realize that there are a few.

If we take a certain path, we must backtrack to the last spot where the path was chosen. On the graph of the southern states,the depth first traversal could be A, E, D, C, B. Backtrack to the last point where you made a choice - E and take another path from there, F,G, H.What abstract data type allows for backtracking? The stack! Or allow recursion to do the backtracking for us. The students should be shown how the stack works before tracing the code.

1 Procedure depthfirst(graph:graphtype? point:char);2 Var id:integer ;3 k :char;4 marked:markedtype;
5 Procedure visit(graphrgraphtype;var marked:markedtype; point:char);6 var temp:ptr;7 begin8 id:= id + 1; marked[point]:=id;9 temp:= graph[point];10 while temp <> nil do11 begin12 if marked [ tempA. vertex] = 013 then visit(graph, marked,temp".vertex,);
14 temp:= temp".link;15 end;16 end;
17 begin18 id:= 0;19 for k:= 'A' to 'H' do
20 marked[k]:=0;21 for k:= 'A' to 'H' do22 if marked[k] = 0 then visit(graph, marked, k);23 end;
How would you change the code to output the vertex visited instead of numbering the vertices?Add to line 8 writeln(table[point]) after passing in table.
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Trace DFS using recursion on Graph 4 and same adjacency list.THIS IS NOT A VERY INTERESTING EXAMPLE FOR RECURSION. SEE NEXT EXAMPLE. The examples chosen for class must be planned so that the algorithm is demonstrated well.
Marked[A] = V

[B] = X[C] = X[D] = 0X
[E] = 0[F] = 0
[°] = X[H] = X

1
23

54

B')

k='A'visit(graph, marked,'A') id = 1 point = 'A' 
temp = * Bvisit(graph,marked, id = 2 point = 'B' temp = ' A ' temp = 'C 'visit(graphparked,'C') 

id = 3 point =*0' temp = 'B ' temp = 'H 'visit(graph, markedj'H') 
id = 4 point = 'H* temp = 'G 'visit(graph,marked,'G') id = 5 

point = 1G 'temp = 'E' and so on
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The trace for recursive DFS on the Graph of the Southern States p.6D and its adjacency list p.8D.
Marked[A] = 0 1

[B] = 0 2
[C] = 0 3
CD] = 0 4
IE] = 0 5
[F] = 0 6
[G] = 0 7
[H] = 0 8 Actually, on the 

blackboard it is good 
to show the completion 
of the recursive 
procedures by erasure.

k='A*visit(graph, marked,'A) 
point ='A' 
id = 1 
temp = * Bvisit(graph, marked,'B') 

point ='B ' 
id = 2 
temp = * A 
temp = "Cvisit (graph, marked,'C') 

point ='C ' 
id = 3 
temp = 'A' 
temp = 'B ' 
temp = 'D 'visit(graph, marked,^')?oint = 'D' 

d = 4 
temp = 1C ' 
temp = nil 

temp = 'E '
visit(graph, marked, •E *) 

point = 'E' 
id  -  5 
temp = 'A ' 
temp = 'C ' 
temp = 'F '

visit(graph, marked,?oint = 'F' 
d = 6 
temp = 'E ' 
temp = 'G '

visit(graph, marked,

' F')

oint 
id = 7 
temp = 
temp = 
temp = 
temp =

•G')

"A
*E
‘F
H

temp = * h 
temp = nil 

temp «* *G 
temp ■ nil 

temp = nil temp ® nil 
temp = •c ' 
temp ** ' E ' 
temp = 'G ' 
temp = nil

visit(graph, marked, 
point = 'H' 
id = 8 
temp = * F 
temp = ‘G 
temp = nil temp = nil

■ H •)

-27D-



www.manaraa.com

92

Time ComplexityIn the depth first search how does the recursion affect the efficiency? We still only look at each vertex and its corresponding edge once. When the recursive procedure returns to a particular adjacency list, the recursion held the place of the last edge visited. This keeps the algorithm with a time complexity of 0(n+e), or 0(e) since the number of edges is usually greater. The trace table for the recursion demonstrates the recursion holding the place of the last edge visited on a particular adjacency list.

Notice it is a K5 complete graph

If a salesman lives in City A and must travel to every other city exactly once and return home, what is the minimum cost of the trip?
The greedy algorithm starts at A and visits the next city that is the least expensive to visit.
AD CD BC BE AE ADCBEA3 + 5 + 8 + 9 + 1 0  = 3 5
Is this the cheapest way? What about ABDECA?7 + 7 + 6 + 9 + 5 = 3 4  Have the students find a path with cost less than 34. [It is important to realize that this is a realistic question for cost, not for distance. Triangle AED does not satisfy the triangle inequality property that the sum of two sides of a triangle must be greater than the third side.]Is there a method to find the cheapest way?

"Unfortunately, there is no efficient algorithm to solve the travelling salesman problem. To do so, a computer would have to examine all possible routes and there are (n-1)J possible routes if n cities are involved. Thus if n=30 cities, the computer would have to check the costs of 29! 8.8418 * 10 **c>possibilities, an impossible task even for a computer." (Dierker,Voxman, 1986, p.31) Note: Since the Graph 38's distance from vertex VI to V2 is the same and V2 to VI, the number of routes is divided in half, (n-1)!/2

Hamilton Circuit Graph 38

A

- 28D -
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The Travelling Salesman problem is an example of the Hamilton Circuit. In 1859, the Irish mathematician Sir William Hamilton (1805-1865) developed a game that he sold to a Dublin toy manufacturer. The game consisted of a wooden regular dodecahedron with 20 vertices labelled with the names of prominent cities. The object of the game was to start at a city, visit every city only once and return to the point of origin. (You don't have to pass through every edge) (Biggs,

This does not have a Hamilton circuit since you would have to visit C twice.

Hamilton's game "Around the World" Graph 40 for homework

There are a few rules to determine if a graph has a Hamilton circuit. (Tucker, 1984, p.58)1) If a vertex has degree 2, then both edges incident at x must be part of any Hamilton circuit.
Why? If one enters a city, one must also leave.

2) No proper subcircuit, that is, a circuit not containing all vertices, can be formed when building 
a Hamilton circuit.Why? One would be visiting a city twice before visiting all other cities.

3) Once the Hamilton circuit we are building has passed through vertex x, all unused edges incident at x may 
be deleted.Why? Since the vertices cannot be used later in the circuit - that would mean visiting a city twice.

4) If the graph is symmetric at a point, either edge 
may be chosen.

jjioya, wiison, 1976) 
Graph 39
A
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(Example from Tucker,1984, p.59) Graph 41

K
Vertices In the circuit
A,B,G I, E, C

The move

Find the Hamilton circuit from A.

Rule

K,H

1. AC,AB,GE,GI must be in the #1 circuit.
2. Since GI is in circuit, eitherJI or IK must be in the circuit. #1,#3,The graph is symmetric; choose JI. #4 Delete IK
3. KH and JK must be in the circuit #1
4. FJ must be deleted. #3
5. F now has degree 2, so BF and FE #1must be in the circuit.
6. Since there are two edges incident #3 to E, EF and EG must be in, eliminateEH and DE.
7. In order to visit D, DB and DC must be in the circuit, but that is impossible for it would form a subcircuit. ABCD #2

All this work was not in vain, for a Hamilton path was formed. ABFEGIJKHCD. A Hamilton path visits every vertex once, but does not return to the point of origin.
Graph 42

Rules
1.BA,CA CE, EBDB,DC must be in the circuit for A,E,D #1all have degree 2 2.Subcircuit ABEC is formed #3 A Hamilton path is ABECD.
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Graph 43 for Homework

Another real world example of a Hamilton circuit is the postal van that must pick up from n mail boxes each day and return to the post office. Minimizing the distance between the mailboxes is similar to the Travelling Salesman problem.Also, consider a robot arm that must tighten the nuts on a piece of machinery. The position of the nuts can be represented by vertices of a graph. The arm must visit every nut exactly once and return to the starting point. The path of the arm is a Hamilton circuit.

DAY 7
Gray Code

3A 3 bit Gray code is a sequence of 2 3 bit binarystrings such that the ith bit string differs from the (i+l)st in exactly one bit, for 1 <= i <= 2 3 .
The binary numbers from 0 to 7 are not an example of Gray code, (000, 001, 010, ... ) since 2 bits change in moving from 1 to 2. In the Gray code, one wants to switch one light off or one light on between numbers. 
Using the idea of light on and off is a clever way of demonstrating 1 and 0 in the binary number system.
Graph 44 is an example of binary code, not Gray code

0
1
2
3
4 #
c
0

0 0 0 
o o

Graph 44 .O #  0
0
&  O 0
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The following list of numbers satisfies the property of the Gray code, but realize there is no sequence to it. 001 1 Oil 2 111 7101 5100 4110 6 010 2 
000 0
One way to visualize the 3 bit Gray code is a cube in 3 space with a Hamilton circuit.
Graph 45

Find a Hamilton circuit 
starting from (0,0,0)
(0,0,0) (1,0,0) (1,1,0) (0,1,0) -(0,1,1) (1,1,1) (1,0,1) (0,0,1) (0,0,0)

Why is touch tone dialing based on Gray code? Why is it beneficial to go from value to value so that only 1 bit is switched? In order to count on the computer without mistakes, it is not possible to do two things exactly at the same time, as change two bit values. We 
need 12 tones for touch tone so that the Gray code must have 4 bits? increase it to 15 numbers and the picture is 4 space.
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Graph ColoringA local zoo wants to take visitors on animal feeding tours, and has hit upon the following tours. Tour 1 visits lions, elephants, and ostriches, Tour 2 the monkeys, birds, and deer, Tour 3, the elephants, zebras, and giraffes, Tour 4 the birds, reptiles and bears, Tour 5 the kangaroos, monkey and seals. If 
animals should not get fed more than once a day, can these tours be scheduled using only Monday, and 
Wednesday. (adapted from Roberts,1976, p.167) Reminder: the tours cannot visit an animal twice in one day since they only get fed once a day.
Graph 46 T.ionfy KangaroosOstriches Tour 5our Monkeys/ 

''Tour 2lephants Seals
Tour 3 DeerZebras

Giraffes Reptiles Tour 4 Bears
Remember the elephants are in Tours 1 and 3 and they cannot be fed twice in one day.Answer: Yes, Tours 1,4,and 5 may be scheduled on Monday, 
and tours 2 and 3 scheduled on Wednesday.If Tour 4 were to include the seals, would the two days be sufficient for all the tours?No, Tours 4 and 5 would have to be held on a separate day.This problem is an example of chromatic numbering of a graph. The chromatic number is the minimum amount 
of colors you can use so that no two adjacent vertices have the same color. Start numbering the vertices so that no two adjacent vertices share the same number. 
Graph 473 The chromatic number is 4.

A good method for determining the chromatic color is to find the largest complete graph and color each of the vertices a different color since the vertices are each 
connected to one another.
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The triangle is the K3 complete graph with chromatic color of 3.
Graph 48

The K4 complete graph has 4 for its chromatic color as shown in graph 49.
Graph 49

Graph 50 (Tucker. 1984. p.68)

C G H
The largest complete graph is K3. Triangle DEF forces a 
color on another vertex. G cannot be the same as E and F. Color D, 1; E,2; F,3; and this forces G to be 1. Since B and C are each adjacent to a vertex of color 1 and are adjacent to each other, they must have colors 2 and 3. Since the graph is symmetric, choose B to be 2 and C 3. This forces the color of A to be 1. The same 
reasoning could be applied to vertices H and I; allow H to be 2 and I to be 3. This also forces J to be 1, but that cannot be since J is adjacent to A which is one. There is a need for a fourth color.

A famous problem in graph theory questions whether one can color the different countries on a map so that two countries with a common border are assigned different colors. Mathematicians tried to solve this problem for over 100 years. Actually there was a proof given by Kempe in 1879, but it was shown to contain a fallacy. 
(Biggs, Lloyd and Wilson, 1976) Finally, a computer assisted proof was obtained by Appel and Haken in 1976. However, some mathematicians still consider it a conjecture.
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Tucker gives an excellent proof of the 5 Color Theorem. Theorem Every planar graph may be 5 colored.
We first need a lemma.
Lemma Any connected planar graph has one vertex of degree at most 5. (i.e. there must exist a vertex whose degree is 5 or less)
This is an example of a proof bv contradiction.

What is the converse of this theorem? Assume it to be true.
Assume that every vertex has degree of at least 6. From a previous theorem £p.6D), we know that the sum of degrees of all vertices is equal to twice the number of edges. Therefore, 2E>= 6V
From the corollary on Euler's theorem, If 6 is a connected planar graph, then E <= 3V - 6. (p.l6D)
Observing these two statementsE >= 3V E - 3V >= 0E <= 3V-6 3V - 6 - E >= 0

-6 >= 0
A contradiction exists, so what we assumed to be true is false.

The Lemma is true. Any connected planar graph has one vertex of degree at most 5. (Tucker,1984)
Another fascinating proof is the proof for the Five Color Theorem.
The proof is by induction.1. Prove that a one vertex graph can be 5 colored.It can be trivially one colored.
2. Assume that all connected planar graphs with (n-1) vertices can be 5 colored.
3. Prove that a connected planar graph G with N 
vertices can be 5 colored.
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By the lemma above, since we have a connected planar graph there exists one vertex of G with degree at most 5. If we delete this vertex x from the graph, we know this graph with (n-1) vertices can be 5 colored by the assumption.

Graph 51
1A

5 f  The vertices and their coloring
//,x*-. ̂  Attempt to place x back in\ —  #B the graph

C' 3
If x has degree <= 4, then we can simply assign to x a color different from the color of its neighbors, so the only real problem occurs when like the above picture, all 5 colors around x are used, and there is no free color available for x.

Two cases1) Suppose there is no path using the color sequence 1-3 from A to C. We could make A and C the same color, 1, and free up color 3 for the vertex "x".
A 1E*

D*

2) If there is a 1-3 path from A to C, then it is impossible to free up one of those colors.But look at B, m  the interior of the 1-3 path. 
Since our graph is planar, there would be no 2-4 path between B and D. Therefore B and D can both be colored the same color 4, and appropriately change any of b's adjacent vertices, and the color 2 is freed up for "x".

Hence, we have colored a planar graph in 5 colors. The method has been used to try to prove the Four Color Theorem but to no success.
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[Students may have difficulty with using the induction to prove the theorem. Why is it necessary to look at the vertex of degree 5? The inductive proof does not do that. If a graph has 22 vertices,by induction, after we remove a vertex of degree 5, we assume the graph of 21 vertices can be 5 colored. Then, what happens when we put the 22nd vertex back in the graph? The proof follows from there]
NETWORK TYPE PROBLEMS

Dr. Henry Poliak, former head of the mathematics department at Bell Labs, in his class on Mathematical Modelling gave a lecture on Graph Theory.
In 1956, accountants from ATT asked the mathematicians at Bell Labs to develop a formula for the following problem.

Given N points on a graph, develop a formula for the length of the line segments joining the points. Does a formula exist L = c»N,i.e., is the length of the line segments directly proportional to the number of points in the graph. The mathematicians questioned the accountants about their need for such a formula.ATT was designing a method for charging for phone service such as a company desiring a special WATTS connection. If you distribute points randomly the result was L <= c V̂ N. There was no easy answer to this question.
ATT had to determine what is a fair way of charging for private line service. A list of such ways would have to include (1) a charge that was independent of actual calls made i.e any bulk service like an 800 number where you don't pay per call (2) a charge that was independent of actual lines used i.e. not where the physical telephone lines are placed (3) For two points, 

the distance between them is considered (4) As the size of a system increases, the charge should grow reasonably(5) The charge should be unique and easy to compute.

Graph 52
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Is the following situation fair?In I960, Delta Airlines had branches in Chicago, New York and Atlanta.
Graph 53 A bright worker at Delta 

figured out if Delta established a branch at a strategic location, call it X, the sum of all the distances from that point X to all the cities is shorter than the original distance connecting all 3 cities.

New York
Chicag

Atlanta

Graph 54
New York

Chicagi
Atlanta

This is a reference to Steiner points which was developed in 1770. (E.Gilbert and H.O.Poliak, 1968)
So an additional fair way of charging must be added.
(6) The charge must exclude a means of adding points to shorten length.

Another situation. When a phone call is to be made from NYC to Chicago at 10 A.M. , very often the lines are busy. In non-hierarchical routing, the call is switched to Los Angeles and then to Chicago. Why Los Angeles? It is only 7 A.M. and therefore phone lines 
are not busy. There are 10 nationwide switching centers, one of which is at White Plains New York. So for a long distance phone call, a direct route is preferred, but if it is not possible, two or three routes are pieced together. If many of these pieces are used, the telephone system may become overtapped and 
some of the calls are waiting for a 2nd or 3rd piece to come through.

What is the busiest day of the year for the phone company? Why, Mothers' Day, of course. What must Ma Bell do? All double and triple routes must be cut off, 
so there are no alternate routes for waiting purposes.
History of the Shortest Network ProblemWhat should ATT charge for telephone service connection that gives a fair charging policy? At the old headquarters of ATT at 195 Broadway, Manhattan, a large map of the United States was placed on the floor 
and pins and strings were actually used to find the
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"shortest network." A network is a graph with values (distance or cost) given to each edge. Long distance is charged by the geometric shortest physical distance -map service.In 1956, the only property of shortest networks that was known was that the shortest network never includes a closed loop. Univac was asked to solve the problem of determining the shortest network for ATT.

DAY 8
How many different networks must be tested in order to find the shortest one? It may be necessary to put distances on each edge and show the students the total distance for each network, so they know what it means to find the shortest network.

Points # of networks
5L-3L2
3-3-3

S ' -  3l5

Using induction on the chart, for n points, there are n r'"A* networks. This was first obtained by 
A.Cayley. Cayley wrote a paper,"0n the theory of analytical forms called trees." (Biggs, Lloyd, Wilson, 1976) A tree is a connected acyclic graph, since trees do not have closed loops. The shortest network problem is renamed the minimum cost spanning tree problem.Is it necessary to test all of networks to see 
which is the shortest? (We hope not)An algorithm must be developed so that all the spanning trees would not have to be found.
Given the opportunity, the students may devise ways of getting the shortest network. It was exciting to observe their methods.

1) Two points

2) Three points

3) Four points 
0~ X

3

4

5

3

16

125
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In 1956, J.B. Kruskal developed the following method.
For this graph (Aho, Hopcroft,Ullman,1983, p.234) with the assigned weights,Graph 55

continually choose the smallest edge as long as no loops are formed.
Graph 56 

B

BC DE AF CEcannot choose BD since it would form a loop AC - 5Now, every vertex is visited and the Minimum Cost Spanning Tree is formed.The steps are simple: Examine edges by increasing cost
Maintain a set of components, that do not form a closed loop (THE 
COMPONENTS DO NOT HAVE TO BE CONNECTED)
Continue until every vertex is in the tree.

At that time,the longest network had 500 points. No, it was not a government agency? the service that checks your credit standing had over 500 different locations for its offices.

- 3
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In 1958, Prim developed his greedy algorithm for determining the Minimum Cost Spanning Tree.
Starting with the smallest edge, continually add edges of minimum cost that are already attached to a branch on the tree , as long as it doesn't form a loop.
1) Choose BC

Add on to your possible list then, any touching edges BD CD AC AB CE CF5 5 5 6 4 6
2) Choose CE

Add on to the possible list

3) Choose DE

B
\

DE2
B

Eand FE 6

D

Nothing is added to the possible list.
No, it forms a loop. Actually B and D

No, for the same reason 
That is fine.

4)areand
Choose BD. already in D.

5) Choose CD.
6) ChooseAdd

AC.
AF3

B

7) Choose AF
Prim's greedy algorithm builds up a connected spanning 
tree.What Abstract Data Type would be helpful in coding the 
possible list of edges? A gueue? A stack? No, the priority queue is needed which could be implemented in 
several ways.

- 4 ID “
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Some guestions that would be helpful in developing the algorithm. You may want to develop a pseudo-code first.1. How should we deal with the weight on each edge?Put an extra field in the node.
2. How do you know which vertices are adjacent to the one just removed?

The adjacency list gives us that information.
3. How do you mark a vertex as "in the tree" or "on the queue"?Use an extra field in the header node or use a parallel array to mark the vertex.
4. Does it matter if marked vertices are put on the waiting list? It is not done in the code, but it wouldn't matter if they were.
5. In our original diagrams, edges were put on the waiting list. This will not be the case in the code to be traced. If we ;just put a vertex on the waiting list, how will we know "its parent"? Realize, a "parent" may change while on the waiting list. A parallel array for parents will also be kept.
An explanation of the data structures for the following program.Type markedtype = array['A'..'Z'] of integer; listtype= ptr? ptr= * node; node = record vertex:char; weight;integer ? link:ptr; 

end;parenttype= array['A'..'Z'} of char; statustype = (intree, waiting, untouched); 
statusarray = array['A'..'Z'] of statustype;

Markedtype is similar to the array in breadth first traversal which shows the order of the visited vertices. listtvpe is a linked list. THE CODE KEEPS THE WAITING LIST AS A PRIORITY QUEUE.Parenttvpe array keeps track of an edge's parent - from where is it coming.Statusarrav is keeping track of a vertex being intree, waiting (on the priority queue) or untouched.
Baase (1988) suggests using parallel arrays rather than an array of records to avoid cumbersome code. I agree.
The code we will trace starts from A. Does it matter when finding the MCST? No, you may not get the same tree, but you will get the same minimum length.
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1 Procedure Minimumspanningtree(graphrgraphtype);2 var status:statusarray;3 x,y :char;4 edges:integer ;5 temp:ptr;
6 waitinglist:listtype;7 parent:parenttype ;
8 wa it ingwe ight:markedtype;9 stuck:boolean;10 begin
11 if trace then writeln('enter mst');12 x:='A'; status['A']:= intree;13 edges:=0;14 clear(waitinglist);15 for y:= 'B' to 'H' do16 status[y]:= untouched;17 stuck:=false;
18 while (edges < 10) and (not stuck) do19 begin20 temp:= graph[x];21 while temp <> nil do22 begin23 y:= temp".vertex;24 if (status[y] = waiting) and(temp ". weight < waitingweight[y])25 then begin26 parent[y]:= x;27 waitingweight[y]:= temp".weight;28 updatewaitinglist(waitinglist,y ,

temp".weight)29 end;30 if status[yj = untouched31 then begin32 status[y]:= waiting;
33 addon(waitinglist, y,temp".weight);
34 print(waitinglist);35 parent[y]:= x;
36 waitingweight[y]:=temp".weight;37 end;38 temp:= temp".link;39 end; {while tempo nil)40 if empty (waitinglist)41 then stuck:=true;42 if not empty (waitinglist)43 then begin
44 remove(waitinglist, x);4 5 status[x]:=intree;46 edges:=edges + 147 end;47 end; {while edges <10}49 if trace then writeln('exit mst');50 end;
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The trace table for Prim's MCST from A 
The ADJACENCY LIST builds up connected spanning tree
D O  — > l-B 1 6| -I) |c| sl4> nil
K1 - 4  1 A 1 61 4 » H U H )  Id | 5 | nil
Cc3 - 4  1 A | 5 | - R T b l  5 | f » fE T 4 T } ->lF 1 6 1 | B j 1 1 n i l

I B  — > LB i 5 |  - |»  Ip  I 5 | - | ^ |T T  2 | n i l  |

Q Q  — > I_dJ_.2,| 4»]cT4ri»[F I'C InlT
IH L H 3 3  IC I 6|-|»(a I 3 | nil

[A]

[B]

STATUS
intree

untouchedtH#TW  u J L L l  1 hjintree

PARENT

i ipi

WAITINGWEIGHT

[C] untouchedwa-i-ting-
intree

[D] untouched
waiting.intree

. E i /
[E]

[F]

waiting intree
untouched waiting- * intree

IBM ipl

I A I
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Trace table for Prim 
WAITING LIST 
WL nil
r a > r m r i

•s MCST
TEMP STUCK 
AB false 
“C

EDGES X 
0 'A'

Y

' B '

'C'
WL->|'c |5 | :H b | 6 | \ | AF • F '

wl~> If 13I -feic15l l e i  \ | nil • F '

"E ' E '

WL*>LC 1 51-tkEI 61 rtelB 16 1 \l ~C •C'
“A 'A'
nil •C'

W L * | * m > I I 3 ? h 3 "A 'A'
~D •D '

WL^iDl 5|-btE|6|-riB|6|\| *E 'E'

WL-»I El 41^MPT S l^ t f g T S r q i p l

~B 'B'
W L ^ | B n U l E ! 4 I W T 5 ' m nil •B'
W lr^E I  4 | W T 5 |  <v]~ Ah 'A'

~C •C'
"D •D'
nil «E«

W I F E ' S  LSI ~D ' D '

WI^|Dl2|U •c*

*F t p  t

nil •D '

WL -*>nil “ B •B '

"C •C '

“E • E '
true
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Time complexity for MCST
Again we are traversing each vertex and all of its edges. Is it another 0(e) algorithm as depth first and breadth first searches? No, keeping track of the waiting list adds to the time complexity. In our implementation of the waiting list, the priority queue, we used an ordered single linked list. Removing an item from an ordered single linked list with highest priority is 0(1), but adding an element to any ordered linked list is 0(n). The operations for the waiting list are inside the while loops, so the time complexity is 0(e#n).Improving the efficiency depends on the implementation of the priority queue. If the priority queue were kept as a heap, removing an item is again 0(1) but inserting an element into a heap and retaining the heap properties is 0(log n). Therefore the time complexity for MCST improves to 0(e log n).
The code for Kruskal's algorithm was not mentioned. It involves knowing the union find algorithm which was not covered. Baase gives a pseudo-code for Kruskal's MCST algorithm in her text. (Baase, 1988) It is noteworthy to mention that Kruskal's algorithm runs faster for sparse graphs while Prim's algorithm is better for dense graphs.
Kruskal's algorithm and Prim's algorithm for MCST are both greedy algorithms since at each step it bites off the most desirable piece.
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Single Source Shortest Path DAY 9Graph 57 (from page ID of sourcebook)
(Aho,Hopcroft,Ullman,1983, p.205)

Notice this is a directed graph

10 100

50
60

20
There exists two different problems.What is the shortest path from one vertex to another?What is the shortest path from one vertex to every othervertex?What are the costs from A to C?An exhaustive search methodA, C 100A,D,C 30 + 60 = 90A,B,E,C 10 + 50 + 10 = 70A,D,E,C 30 + 20 + 10 = 60
What is the difficulty with this method? It is time consuming to list all the possibilities.Dijkstra's method for Single Source Shortest Path(SSSP) 
is very similar to Prim's MCST algorithm.Begin by listing the distances from A to every other vertex.
S is the set of vertices already in the tree.

Dist[B] Dist[C] Dist[D] Dist[E]S = (A) 10 100 30
Choose the vertex with the minimum distance and add itto set
S = {A,B) Now , what is the minimum distance to every vertex using the vertex just added in to the set. This only helps us in getting to E.A-B-E

10 100 30 60Choose the vertex with the minimum distance
S- (A,B,D) Now use D to get to every other vertex.A-D-C A-D-E10 90 30 50Choose the vertex with minimum distance
S={A,B,D,E) A-D-E-C

10 60 30 50The method terminates when all the vertices are in the set(or on the tree)Call this method, the Chart method of Dijkstra for SSSP.
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Dijkstra's Algorithm for SSSP.
S: set of vertices whose minimum cost are known Dist[x] minimum cost to get to vertex X passing only through vertices in S
originally Dist[i] = cost['A',i]if there is no arc, cost =
Algorithm
1 For V:= 1 to (n-1) do
2 find min Distfw] where w is in V - S3 Add w to S4 for vertices in V-S update D
The code given for SSSP is very similar to Prim's MCST. Compare the algorithm to the code.
In addition to the data structures for minimum cost spanning tree, what new information is to be saved and how should we save it?
The distance of paths between 2 joints will be updated in SSSP while the waitingweight m  MCST was not. When is the distance updated? The distance value is updated for a vertex y when the distance from the point of origin to the vertex, x, whose adjacency list is presently being traversed plus the distance in the present node is less than the known distance from the point of origin to that particular vertex y.
No algorithm exists to determine minimum airflight cost. You travel agent doesn't necessarily give you the lowest fare, i.e. if you are willing to make several stops.

Time complexity
Updating the distances in the Single Source Shortest Path does not decrease the efficiency that was discussed with the Minimum Cost Spanning Tree. The time complexity is again Ofn*1-) unless the priority queue is 

kept as a heap which will improve the time complexity to 
0 ( e log n)and the updated distances are just added to the heap, not searching and replacing the former larger distances.

“ 48D -



www.manaraa.com

113

1
234 
6 
89
10 
11 1213141516171819
20 21 
22232425
26272829303132333435
3637
3839
404142434445464748495051
525354

Procedure ShortestPath(graph:graphtype; v,w:char)? var status:statusarray ?parent:parenttype; waitinglist:listtype? 5 distance:markedtype; temp:ptr? ““ 7 stuck:boolean;x,y:char; beginif trace then writeln('entering shortest path'); distance[v]:=0? parent[vj:=* '? 
clear(waitinglist);For y:='A' to 'H' do status[y]:= untouched; status[v]:=intree? x: =v;stuck:=false?while (x<> w) and (not stuck) do 
•£>egintemp:=graph[x]; while temp <> nil do beginy:=temp".vertex;

if (status[y] = waiting) and (distance[x] + temp".weight < distance[y]) 
then beginiparent[y]:= x?Idistancefy]:= distance[x]+temp".weight; updatewaitinglist(waitinglist,y,temp".weight; I end;if status[y] = untouched then ,beginstatus[y]:=waiting? addon(waitinglist, y, temp".weight); parent[y]:= x? distance[y]:= distance[x] + temp".weight? 

end;temp:= temp".link; end;if empty(waitinglist) then stuck:=true else beginremove(waitinglist,x); status[x]:= intree end;end? { while x<> w and not stuck do) writeln('the shortest path in reverse order is'); while x<> ' 1 do 
beginwriteln(x) ? 

x:= parent[x]? end;end;
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Single Source Shortest Path

Using this adjacency list, makes the code, more interesting to trace.

Adjacency List
Graph [A]

[B]
[C] 
[DI­
CE]

^ I c | ioo| -U Ib I 10 t -[̂
-> 1 E I 50 I \

nil
lc I 60 I - U  |E j 20 1^ ]
l~c I 10 1 \

3_0_ 1 \

Aside: An interesting way to find the shortest path foran undirected graph is from A.K. Dewdney's The Turing Omnibus. (1989, p. 203)
Once again, we may solve this shortest-path problem by preparing a physical analog of the graph m  question. Cut a long string into lengths which reflect the numbers assigned to edges, allowing a little extra for knotting the ends of the strings together. When the strings have thus been tied into a configuration identical to the graph, then take the "vertices" (knots) u and v in separate hands and pull them apart until the network of strings resists any futher separation.
The shortest path (or all shortest paths, if there is more than one) will stand out clearly as a 

sequence of taut strings between the two hands. If knots have been labeled with the names of the vertices which they represent, then the shortest path can easily be identified in the original graph and the problem is solved.
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Trace Table for Shortest Path from 'A' to 'C*
Dijkstra's algorithm 

STATUS PARENT DISTANCE
A -untouched intree

i i 0

B untouched waiting intree
•A'

/

10

C untouched wa-i-ting intree
r ip'

60
D untouched wa i ting intree

'A' 30

E untouched waiting intree
io/i 
7 iD i

10 + 
30 +

50 = 60 
20 = 50

WAITING LIST TEMP STUCK V W X Y

•A' 'C' 'A'
~C 'C*

WL—>|c|l00l \ I AB 'B'
Wlr^lBllO 4*|c |l00| \| "D •D'
WbHB 1101 - H d 130l-Me 1100 3 n i l 'B'
WLdDl 30| 4»ic I100N 'E iE i

WÊ lD 1301 >tE lso|-4»P 1100 |\ |nil 'D'
WI«4El501-^lcllb(J|\| 'C 'C'
WL^ i C T w r q “E •E'
WIr**El20l -Klc I 60l\l nil •E'
t - ■ - ■■ '■
WIrH C 160 I \ I “C 'C'
WL*fc 1 10 | \| nil •C'
WL nil nil
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If you need to find the shortest paths from all n source nodes, you must apply Dijkstra's algorithm n times. The resulting algorithm is O(n^) since Dijkstra's algorithm for SSSP is 0(n*~). Again improvement can be made if the priority queue were kept as a heap.
Floyd developed an algorithm for finding the 3shortest paths from all n source nodes that is also O(n) as can be easily seen by the nested for do loops.

Floyd's Algorithm for All Pairs Shortest Paths (APSP)
A two dimensional array is kept for the distance (cost) between 2 vertices, o *  is used of there is no path.

From this small graph (Aho,Hopcroft,Ullman, 1983, p.207) Graph 57

Dist*^[i,j] minimum distance for a* path from i to j that does not pass through a 
vertex lettered higher than k.

Dist* ,[i,j] A B CA 0 8 5
B 3 0C 2 0

- Dist- [i/j] You are allowed to pass through vertex A.
A B C

A 0 8 5 3 + 5B 3 0 minimum (c?* , distance from B toC o ° 0 using A)
minimum(2, distance from C to B using A)

■ » • _ [i/D] A B CA 0 8 5B 3 0 8C 2 0
Dist^[i,jl allows the intermediate vertices to be A or B 

6 A B C  dist from A to C using BA O  8 ^ ----minimum(5, 8 + 8) - 5
B 3 0 — minimum( 8, 0 + 8)
C 2 0minimum ( , distance from C to A using B)3 + 2
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A B CA 0 8 5B 3 0 8C 5 2 0

’ < [ifj] = ] /Dist. [i,j] mmumy '
(pist [i,k] + Dist [k,j]

Realize, since using letters, when k='B', k-1 = 'A' Every entry in Dist ^ [i,j] <= D i s t ^  [i, j ]

Distr [i/j] /minimum (8, dist from A to B using C)A B / C  5 + 2A O  &  5
B 3 0 8 All entries should be checkedC 5 2 0 to see if there are any otherminimum paths

Dist^ A B CA 0 7 5B 3 0 8C 5 2 0

Floyd's algorithm finds for us the shortest distance between every two vertices on the graph. Floyd's algorithm demonstrates if it is worth testing whether we should pass through an intermediate vertex or to move to a vertex directly. Express Air delivery has become a very lucrative business. Federal Express chose Memphis, Tennessee for its central delivery point because of Floyd's algorithm and the availability of airport space.

Floyd's Algorithm
For K:= 1 to N do 

For I:= 1 to N do For J := 1 to N doif Dist[I,K] + Dist[K,J] < Dist[ I,J1
then Dist[I,J] = Dist[I,K] + Dist[K,J]
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Topological Sort
In our Computer Science Department, there are prerequisites for required and elective course.

CS123 ----^ CS124 — ^  CS206 ̂ CS207
\ *CS121 — j CS122 r-^ CS204 "^)CS205

CS131 ---- > CS 132^*^
CS 216

There are a few different sequences to study courses.CS 121, CS 122, CS 123, CS 124, CS 131, CS 132, CS 204, CS 205 ...
or CS 121, CS 122, CS 131, CS 132, CS 123, CS 124, CS 206,
CS 204, CS 207 ...

A topological sort is a linear ordering that has the property that if i is a predecessor of j in the 
network than i precedes j in the linear ordering.

A

E
What are possible topological sorts for this graph?
Before each vertex is visited, all of its prerequisites must be traversed. In eliciting an Abstract Data Type to solve the problem, students may respond Stack or Queue. Putting all the elements on a stack as in depth first search will not work. But for above graph placing the elements on a queue in breadth first fashion will work. A counterexample is needed to show the problem with bfs. Construct an edge between A and C for the counterexample.We must keep track of the indegree of a vertex, that is the number of edges coming into a vertex.

A counter field in the vertex node is used for the indegree of a vertex or in the code we use a parallel array with the incounts that is passed into procedure topological order, so that the original implementation of graph is not changed. Countarray = array['A'..'Z'] of integer.
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The adjacency list for the graph.
3 *  1b I - h * £ nil

B -*>|C j nill
2 | -h> LF | nil

nil
|e
[F | 2 | nil
1
2345
67
8910 
11 12
13141516171819
20 
21 
22232425262728293031323334
3536

Procedure toplogicalorder(var graph:graphtype;n:integer, count: countarray);Var j, k :integer; temp:ptr; done:boolean; stack:stacktype;I:char; begin
clearstack(stack);For I:= 'A' to lastvertex do if count[I] = 0then push(stack, I);J: =1;done:=false;while(J<= N) and (not done) do beginif empty(stack) do then beginwriteln('loop formed'); done:=true; end else begin

pop(stack,I); writeln(I); 
temp:= graph[I]; while J tempo nil) do begin

k := temp“.vertex; count[k]:=count[k] - 1; if count[k] = 0then push(stack,k); temp:= temp“.link; 
end; (of while temp <> nil do)

J := J + end;
end;

37•end;
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The trace for topological sort, stack.
— *  bottom topStack J Done N

Notice

I

the use 

temp

of the 

k

--- *A 1 false 6 •A' *B B
B ' "D D

*E E
B, nil
B  ̂ 2 •E' ~C C

~F F
"D D

B, D ' nil
B ̂  3 •D* nil

4 'B' ~C C
nil

5 •C *F F
F ̂ nil

6 i p • nil
true

count[A] 0
count[B] £ 0
count[C] / i 0
count[D] i I 0
count[E] L 0
count[F] i 1 0
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Classification and Efficiency of Algorithms
In the graph theory component of the algorithms course, we have studied many different type problems and some solutions.
Determine whether two graphs are isomorphic.Is this graph planar?
Does this graph have an Euler path or Hamiltonian path?Can this graph be colored using only five colors? using only four colors?Given a graph, what is the minimum cost spanning tree?Find the shortest path between two points on a graph.

Mathematicians and computer scientists have set about classifying algorithms depending upon their efficiency.
PROVABLY UNSOLVABLE

NP COMPLETE

Let's look at some of these classes.
There are some problems in mathematics for which 

efficient algorithms exist: square root, long division,Minimum Cost Spanning Tree and Single Source Shortest Path. These are placed into the class P for which polynomial time algorithms exist. There are other problems for which no algorithms exist and still another group of problems which can only be solved by inefficient and therefore largely unusuable algorithms.
Garey and Johnson's introduction in Computers and Intractability gives an intuitive understanding of an NP complete type problem.

The boss calls you into his office. "He needs a 
good method to determine whether or not any given set of specifications for a new "bandersnatch" component can be met, and if so, for constructing a design that meets them."

- 57D "



www.manaraa.com

122

After a considerable amount of work, you cannot find an algorithm better than searching through all 
possible designs. This is not the desired method.

How should you approach the boss?
1. I cannot find an efficient algorithm. I guess I am just too dumb.2. I cannot find an efficient algorithm because no algorithm is possible.
3. I cannot find an efficient algorithm but neither can all of these famous people.
The boss would prefer the second option if there were a proof that no algorithm is possible. But such proofs are just as hard as finding the algorithms themselves. The third response should make the boss just as satisfied.(Garey and Johnson, 1979, pp.1-3)Class NP consists of problems that can be solved by a non-deterministic machine in polynomial time. An explanation of non-deterministic machine is given on page 61D of the sourcebook.
Why should we be concerned about efficient or 

inefficient algorithms? Hopcroft states in his Turing Award Lecture, "People argued that faster computers would remove the need for asymptotic efficiency. Just the opposite is true with faster computers, the size of attempted problems becomes larger."(Frenkel, 1987,p.200)
Lewis and Papidimitriou in "The Efficiency of Algorithms" return to Euler's Konigsberg bridge problem to explain efficiency.(Source Book, P.17D) Without knowing Euler's theorem, one could list all possible paths and observe if any satisfy the requirement of visiting all bridges. This exhaustive search approach is too time consuming when there are a fair number of vertices.
Another approach is to use the Depth First Search to see if the graph is connected and then determine ifthe degree of every vertex except two is even. This is

a very efficient way of testing to see if there is an Euler path.
How much better is the second approach?With the original graph of 4 points and 7 edgesboth Euler's techniques and exhaustive search are fast enough to be considered practical. Yet every time we add one more point and a few edges, the size of the list 

of possible paths for the exhaustive search doubles.
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c

The exhaustive search from A125647125643126475

There are at least 43different paths just
starting from A. It can betediously shown that by
adding a point E and twoedges, much more work isrequired using this method.124983765124983756124389765124389756

n-1Using the rules for geometric sequence 1 = ar , where 1= last term, a= first term, r is the ratio of the 
second term divided by the first, and n is the number of terms you wish in your sequence, the number of test cases is 25 for a graph of 10 vertices for some unknown algorithm. One can see how quickly the number of test cases increases,as the number of vertices increases
by 1.
number of vertices number of10 25

11 50
12 10013• 200

0• •
• »20 256,000

Exhaustive search not only is a slower method... in general it is too slow to be of any value." (Lewis and Papadimitriou, 1978, p.99) If n is the number of vertices then the growth of this kind, can be described by a mathematical function such as 2 There are other functions nn and n! which have similar or higher rates of growth. On p.39D, there is a reference to Cayley's result that the number of networks given n points is n-2
n

Many texts give tables showing values of n and the comparison of time for different type algorithms. (Horowitz, Sahni, 1989, p.124; Baase,1988, p.32; Sedgewick,1988,p .74)
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Polynomial functions characterize the class of problems that are guaranteed to run in a reasonable amount of time. In a polynomial function, n, the size of the list would never appear as an exponent. Euler's method for finding Euler paths increases as a linear function of the size of the graph. Dijkstra's method for SSSP is displayed as a quadratic function. For small values of n,the polynomial function may have a greater value than an exponential function, yet there is always a value of n beyond which the exponential function is greater.This discussion of efficiency is independent of the machine. "For sufficiently large problems a polynomial time algorithm executed on even the slowest machine will find an answer sooner than an exponential time algorithm on the fastest computer." (Lewis and Papadimitriou,1978, p.101)
Notice the provablv unsolvable problems. These are not the inefficient problems we have been discussing. A classic example of a provably unsolvable problem is the Turing Machine Halting Problem."Is it possible to construct a program or algorithm to decide if an arbitrary program halts on an arbitrary input?"While this question will be discussed in a later course, Theoretical Computer Science, a brief explanation will be given. This problem was presented at an AP Pascal Conference at Barnard in December 1986, and is also discussed in "A Programming Approach to Computability." [Kfoury, Moil, Arbib, 1982]
This jproof is another example of proof by contradiction.

Assume there is a function called halt(x) that upon 
reading a program determines if it halts.halt(x) = 1 if the program halts on input x

halt(x) = 0 otherwise
Given another program called Confuse.

Program Confuse; 
begin 

y:=l? read(N); if halt(N) = 1then while y=l do (nothing)end;If halt is a legal program, then so is Confuse. Hence, the program Confuse can be operated on by halt. Confuse 
will only terminate when halt(N) = 0, but that is a contradiction. Confuse does not halt when halt(N) = 1,
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but that is when it was supposed to terminate. The contradiction tells us that confuse and halt cannot exist together. It is unsolvable whether an arbitrary computer program halts on its own index."We have only the deepest sympathy for those readers who have not encountered this type of simple yet mind-boggling argument before. It resembles the 
argument in "Russell's paradox", which forces us to discard arguments concerning the class of all classes, a notion whose absurdity is not otherwise particularly evident." (Minsky, 1967, p.149)

Ian Stewart in The Problems of Mathematics (1987, p.218) shares with us an idea that " has a similar logical structure to a card, on one side of which is written:
The statement on the other side of the card is true, 

and on the other:
The statement on the other side of the card is false."

Finding an Euler path is considered a polynomial time problem, using Euler's method. We have already discussed there is no efficient solution to the finding of a Hamilton path or in answering the Travelling Salesman problem. (p.28D) But mathematicians have not been able to prove there is no efficient method. The 
class NP or non-deterministic polynomials are a set of problems that can be solved by a non-deterministic algorithm in polynomial time.

The explanation of non-determinism is understood by brief discussion of deterministic and non-deterministicfinite automata

What are suitable words in this language if the initial state is 1 and the ending state is 4? abc very definite! The next state is determinedabbabc at the reading of a certain character.
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In this non-deterministic finite automaton, the wordsconsist ofabe
aabe At certain states in thisaabbabe multigraph, you have 2 choicesabdbf for the next state depending. . . etc. on a character read in. Thatis the non-determinism.In a deterministic algorithm, each time we run an algorithm with the same input, we get the same output. This does not happen with non-deterministic algorithms. Class NP consists of problems that can be solved by a non deterministic machine in polynomial time.

Many problems in the class NP can now be solved by exponential time algorithms. Perhaps in the future, efficient algorithms may be discovered in which case NP will be the same as P. At this time, we think that is highly unlikely.
How do we distinguish between P and NP?For a problem to be in the class P, the efficient algorithm must be given.
"Problems in the class NP ask a yes-or-no question that often can be answered only through a time- consuming, inefficient procedure, but the answer is known to be yes." (Lewis and Papadimitriou, 1978, p.103) A demonstration of the solution can be shown in polynomial time. For example, given a certain graph a Hamilton path can be shown even though there were no efficient algorithm to find it. The demonstration of the Hamilton path is the "Yes" answer to the question, "Is there a Hamilton path?" It may have been very difficult to find a Hamilton path for there is no known efficient algorithm.

The method we used to find Hamilton paths on page 29D is called a heuristic since it does not work in all 
cases.Another problem in the class NP asks whether a number is composite. Can it be written as the product of two other numbers? Even with the computer it takes a long time to find factors of a very large number, but 
once they are found the two factors multiplied together
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In 1640 Pierre de Fermat proposed that 4,294,967,297, which is equal to 2-3a- + 1, is a prime number, and he was not proved wrong until Euler discovered the factors of the number in 1732. (Lewis and Papadimitriou,1978,p. 103)The two factors are 6700417 and 641.
Whenever the answer is yes for asking whether there is a solution to an NP problem, there must be a short and convincing argument for proving it.
The complements of NP problems may not be in the 

class NP. The complement of the Hamilton path problem asks to show that given a graph there is no path passing 
through each vertex. The only solution known is to show all the paths (Exhaustive search) and this does not qualify for a short argument for the proof. So the 
complement of the Hamilton path problem may not be in the class NP. Mathematicians have put this sort of problem into a class of its own. co-NP. Co-NP consists of the complements of problems that are NP and are not NP themselves.What about the complement of the composite number problem? Is this number prime? Vaughan Pratt of MIT has demonstrated short proofs for determining that a number is prime, yet no one has discovered an efficient algorithm. Testing for a prime number is an example of an intractable problem. It can be proved that there is no fast algorithm for it. A problem is tractable if there is a fast algorithm that will solve all instances of the problem. The prime number problem is an NP problem.To summarize there are two definitions for NP problems. First, NP consists of problems that can be solved by a non-deterministic machine in polynomial time. Second, NP problems are decision type problems, which cannot be solved by a deterministic algorithm, yet for which a solution for a given input can be checked quickly.

Mathematicians have proven that if one efficient solution is discovered for some problems in NP then many problems in NP will also have a solution. How remarkable! They are reducible to each other. We call these problems NP Complete. This is a profound discovery, that is, if one solution is found, more problems will get solutions. In 1971, Stephen Cook was able to prove this is so by using propositional calculus. ( More on this m  the Theoretical Computer Science Course). Since a proof exists that there is no fast algorithm to determine if a number is prime, the prime number problem is NP but it is not NP complete.

- 63D _



www.manaraa.com

128

Is P = NP or is P a proper subset of NP? "In other words," Ian Stewart (1987, p.210) states, "if you can check a solution in polynomial time, can you find it in polynomial time?" Baase (1988) states that it is believed that NP is a much larger set than P. But no one has been able to prove that any NP problem is not in P. Garey and Johnson (1979) have stated that Graph Isomorphism( determining whether two graphs are isomorphic to each other) is an open problem and have not classified it in any of the groups just studied.
Why is it good to know whether problems are in the class P, NP,or NP complete? Since NP complete algorithms probably have no efficient algorithms, it is not worth looking for one. Approximate heuristic solutions that are close to optimum solutions should be used.

In teaching the algorithms course, we require students to research an algorithm we have not discussed in class, write a short paper explaining the algorithm and then make a presentation to the entire class ( after discussing it with the professor). Some of the interesting graph theory problems that have been chosen were the Stable Marriage Problem , Knapsack or Bin Packing problems (Sedgewick,1986) and Instant Insanity (Tucker, 1984 or Grimaldi, 1985).
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APPENDIX C 
HOMEWORK SHEETS

Sheet #1 Definitions and Isomorphism
1. Are the following graphs isomorphic?If yes, give the matching of the vertices. 

If not, explain why not.

E D C

b) (from Grimaldi, 1985, p.437) State your method.

F

E
D

2. Coach Courtney is having a tournament for the sixin-house basketball league. Each team must play two 
other teams. Draw a model(graph) for a possible schedule for this. There is no time limit to the games. Are all the answers isomorphic to each 
other?
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Sheet #2 More on isomorphism, adjacencymatrices and adjacency lists
1. Are the following graphs isomorphic?If yes, give the matching? If not, why not? (from Molluzzo, 1986, p.412)

2. Given this adjacency matrix, draw its corresponding graph. Are all the answers isomorphic to each other?
A B c D E

A 0 1 0 1 0
B 1 0 1 0 1
C 0 1 0 1 0
D 1 0 1 0 1
E 0 1 0 1 0

3. Set up the adjacency list for the following graph. C Washington

Oregon D Idaho

F Utah
California

G Arizona

4. (from Tucker, 1984, p.28) There used to be 26football teams in the NFL with 13 teams in each of 2 conferences. An NFL guideline said that each team's14 game schedule should include exactly 11 gamesagainst teams in its own conference and 3 games
against teams in the other conference. Byconsidering the right part of a graph model of this scheduling problem, show that this guideline could 
or could not be satisfied!
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Sheet #2 continued
5. A graph is partitioned into regions(faces). Aregion is an area surrounded by edges. No matter how many different isomorphic ways a planar graph is drawn the number of regions remains the same.

1
This graph has 4 regions.

Look at some of our graphs and fill in the chart.

Regions Edges Vertices
_______      Graph 21,23
_______      Graph 19
_______      Graph 3
_______      Graph 4

Can you find a relationship among the regions, edges and vertices?
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Sheet #3 Planar graphs

1. Redraw the graphs with as few edge crossings as possible. If the graph turns out to be planar, verify Euler's formula R = E-V+2. If it isn't planar, can you prove it isn't?
a)

b)

A

c)
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Sheet #4 Euler paths and circuits
For this graph

D
How many regions are there?What is the degree of each region?________Verify that the sum of the degrees of all regions is twice the number of edges.

2. Find an Euler circuit or path for:
a) A B C

I’ J k D*

H G

b)

would you be looking for an Euler circuit?

d) When would you be looking for an Euler path?
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Sheet #4 continued
3. (from Martin Gardner's Sixth Book of Mathematical Games from Scientific American.1971P p.96)

Lewis Carroll first proposed the problem.Find an Euler path without intersecting lines. You must traverse each edge exactly once.

4. (from Tucker, 1984, p. 92) Suppose we are given 3 pitchers of size 10 quarts, 7 quarts, and 4 quarts. Initially the 10 quart pitcher is full and the other 2 are empty. We can pour from 1 pitcher into another pouring until the receiving pitcher is full or the pouring pitcher is empty. Is there a way to pour among pitchers to obtain exactly 2 quarts m  the 7 or 4 quart pitcher? If so, find a minimum sequence of pourings to get 2 quarts.
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Sheet # 5 Breadth first traversals
Consider the tic-tac-toe game after a first move by X and then a move by O as shown. Build a tree for the successive plays of the game and show how X can always win. Refer to the boxes asnumbered

7 +8 +9

2. From this graph give a breadth first traversal from A.

I
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Sheet #5 continued

3. Practice the code used today for the Breadth first traversal. With this adjacency list of the graph of Western states from sheet 2, give a trace table.
Graph[A]— ) IB I 4^ E 1 -ffr [g \

[B ] — >  I.e.1 Id 1 4 - ^ e

[c] — ^ Ld„ L 4 - X H S
[D ] — >  |~F T - 4 >Le  I - f ^ |B l  - U \ c  1 ^ 1

[E] |XE3̂ HJ3>(HZ3->EIZ3̂ lRl
[ f ] I g L+) Le i -b >(dT ^ 1
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Sheet # 6 Depth first traversals, Hamilton circuits
1. For this graph, show a depth first traversal.

I

2. A graph is connected if for every pair of distinct 
vertices A, B there is a path between A and B. What could we use to tell if our graph is connected given an adjacency list?
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Sheet #6 continued
3. From this adjaceny list for the graph of the western states from sheet 2, show the trace table for the recursive DFS.
Graph [A] — }

[B] — ^ GE
[C] — ^  [D
[D] — * [F
[E] — ^ |F
[F] —
[G] —

3-^Gl E
-=̂ TdT ^ [eT ^ Ia |̂ |
3r>H3Hl

m ^ ic
3̂  OIB lEZE3r) 1B1 [d 
3f> HZĈ IdZIH
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Sheet #6 continued
4. Find a Hamilton circuit or path, if one exists, a)   b)

5. Find a Hamilton path, if it exists. Otherwise,if possible, prove no Hamilton circuit exits.

6 . What is the difference between an Euler circuit and a Hamilton circuit? Which one is easier to find?Is there an algorithm for each?
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7. (From Gardner, 1971, p.98)

Why can't a Hamilton path be found?Clue: Count the degree of each vertex; color thevertices of degree 3 black; color the vertices of degree 4 red. (This solution is from a proof byH.S.M. Coxeter)

8 . (from Gardner, 1971, p.98)
Do you remember studying the Knight's tour problem from recursion? Placing the Knight on a square of the chessboard, can you find a path of continuous Knight's moves that will visit every square once and return the knight to the original square. The line segments connecting consecutive moves of the knight, will form a graph. What does this have to do with a Hamilton circuit? Try it on a 6 by 6 chessboard.

140

9. Why is it true that every complete graph contains a 
Hamilton circuit?
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Find minimal edge coloring for: 
A

D ■B
How many colors are needed to color the 15 billiard balls in this triangular array with only touching balls of different colors?

The ACM SIGCSE has 18 different committees. Each 
committee is supposed to meet one hour during the convention week. The one constraint is that no member should be scheduled in two different committee meeting at the same time. The program chairperson has a list of committees and its members. She must use as few as hours as possible to schedule the meetings. Help her by modelling this as a graph color problem. Two or more committees may meet at the same time as long as they don't have a common member.
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Sheet #8 Minimum Cost Spanning Trees
1. (Graph is from Stubbs and Webre,1989, p.370)

A 3 B

a) Using the step by step process show Kruskal's method for finding Minimum Cost Spanning Tree.

b) Using the step by step process/ show Prim's method for finding Minimum Cost Spanning Tree.
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Sheet # 8 continued
2. Using this adjacency list, draw the graph and trace through the code for Prim's algorithm for MCST.
A — } IB I 1 I ~f>|D I 5 I fE j 2 I ̂  I
B  ^ |C | 2 | -BjA | 1 | + -> IE [ 6 | D | 4 H
C — > lE_| 3 | -^ ID | 7 |"4-» IB L2.INI
D -- } |C I 7 | -f̂ |A | 5 | 4-S> |E [ 6 \ ~t~̂ |B | 4 Ki

-T>C iL



www.manaraa.com

Sheet # 8 continued
3. Find all the spanning trees for this graph.
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Sheet # 9 Single Source Shortest Path (Dijkstra's algorithm)
1. Use the chart method for finding the single source shortest path from A to every other vertex.

11

10

2. (Graph is from Horowitz and Sahni, 1989, p.407)
✓  10 A 4 ------------- :B‘

10 >  is
a) Give the adjacency list for this directed graph. 

Have each adjaceny list in alphabetical order.

b) Trace the code for Dijkstra's SSSP algorithm.
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Sheet # 10 Floyd's Algorithm, Topological Sort, Efficiency of Algorithms
1. Use the chart method for Floyd's algorithm to find All Pairs Shortest Paths

14

2. Professor Courtney neglected to tell her studentsthey are to have an exam on Wednesday. Aware of who are friends in the class, she set up this graph.
Kevinlien

KathyJane Peter

ichaelJack

If students are willing to make 1 or more phone calls, give two possible orderings of who gets the message first. Kevin won't believe the message until he gets two phone calls.
3. For this graph, trace the code for topological sort.
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Which choice would a 12 year old girl like to have for an allowance?
a) To be given the square of the number of days ofthe year i.e. If , 2‘f',3<f,4f,.. . 365<f
b) To be given lc on January 1, and double theamount each day of the month, and stop the allowanceon January 31st.

Would you prefer an algorithm that requires N"^ steps or 2 ^  steps? Explain.

What does it mean that two NP complete problems are reducible to each other?
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APPENDIX D

PROGRAM ASSIGNMENT ON GRAPH THEORY 
New YorkOhio

Jlew Jersey

Virginia -------Given the graph, with the highway distances between the capital cities of the given states, write and test a well structured program that
1. Reads in the vertices of each edge and its corresponding weight to an adjacency list.
2. Prints out the adjacency list for the graph.
3. Does a breadth first search from any vertex inputed.
4. Does a depth first search from any vertex inputed.
5. Finds the minimum spanning tree using Prim's algorithm and prints out the edges of this tree.
6. Finds the shortest path between any two vertices inputed using Dijkstra's SSSP algorithm.

You may use the code we have traced in class for each algorithm. Realize that in class all the vertices were referred to by a letter. You will have to set up alook up table whose subscripts are letters and whosevalues are the names of the vertices. This table will be sent to most procedures. Table should be declared as 
a record where one of its fields concerns itself with the size of the table and allows the program to work for 
any size table.Your code should work for any size graph.Therefore, the graph should be declared as a record withone of its fields holding the number of edges.
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APPENDIX E

Program graphtraversal(input,output);{the code has not been tested for many cases;* if a state is requested that is not in the table, an* error message is given and
* the operation is not executed'} uses Dos, Printer;Const blank=* ';type ptr = * node;node = record vertex:char; weight:integer;1ink:ptr; end;

graphtype = record
edges:integer;list:array['A 1..1Z 1] of ptr; { every vertex must be labeled by a letter} end;

stringtype= string[15];markedtype= array['A'..1Z '] of integer;
tabletype = recordelements:array['A '..'Z'] of stringtype; lastvertex:char; end;
queuelink = * queuenode; queuenode = record info:char;

1ink:queuelink; end;queuetype= record
front, rear:queuelink; end;

statustype= (intree, waiting, untouched); parenttype= array['A'..'Z'] of char; statusarray= array['A'..'Z'] of statustype; listtype= ptr;
stacktype = * stackrecord; stackrecord = record info: char; next:stacktype; end;
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Var temp:ptr ?graph: graphtype; edges, I:integer; state;stringtype; point,pointtwo:char; 
table:tabletype; ch:char; trace:boolean; code:integer;

Procedure Initializetable(var intable:tabletype );Var I:integer;character:char;
beginif trace then writeln('Enter initializetable'); for characters 'A' to 'Z ' dointable.elements[character]:= blank; if trace then writeln('Exit initializetable'); end;

Function subscript(stringvalue:stringtype;
var intable:tabletype): char; {creates a table of strings and corresponding* characters - it first searches the* table to see if the string is there, if it is it* returns the character, if not it adds it onto the* table. The table is in a linked list since we don't* know how many items will be on the list)

var ch:char;found:boolean; begin
if trace then writeln('enter subscript'); ch:= 'A'; found:=false;
while (intable.elements[ch] <> blank) and(not found) dobegin

if intable.elements[ch]= stringvalue then found:=true else ch:= succ(ch);end;
if foundthen subscript:= chelse begin intable.elements[ch]:=stringvalue; 

subscripts ch; intable.lastvertex:=ch;
end;if trace then writeln('exit subscript returning ',ch) ;end;
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Function search (stringvalue:stringtype;table:tabletype):char;{This is used after the table has been created to return * the letter name of the vertex) var ch:char; found:boolean; 
beginfound:=false; ch: =' A ';while (not found) and (ch<=table.lastvertex) do if table.elements[ch] = stringvalue then found:=true else ch:=succ(ch); if foundthen search:=ch else search:=' ';end;
{code for reading in the graph and creating the adjacency list)
Procedure Readingraph( var graph:graphtype;var mtable:tabletype);Var vertexone, vertextwo: string[15];i,j,ch:char; temp:ptr;number, t:integer; infile:text; newweight:integer; filename:string[20]; undirected:boolean; response:string[5]; 
begin writeln( 1 From which file are you reading?'); readln(filename); assign(infile, filename); reset (mf ile); 

for I:= 'A' to 'Z ' do graph.list[I]:=nil; initializetable(intable);writeln(' How many edges are there in yourgraph?');readln(infile, graph.edges);writeln('There are ', graph.edges, ' edges');writeln('Is your graph undirected? Yes/No and
press enter');readln(response);if (response ='Yes') or (response ='yes') then undirected:= true else undirected:= false;
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for number := 1 to graph.edges do begin
vertexone:=''; vertextwo:=''; while not eoln(infile) do begin
read(infile, ch); vertexone:= vertexone + ch; end; readln(infile); while not eoln(infile) do begin read(infile, ch); vertextwo:=vertextwo + ch; end;
readln( infile) ;write(vertexone, 1 to ', vertextwo); i:= subscript(vertexone,intable); j;= subscript(vertextwo,intable); if trace then writeln(vertexone,'=', i); if trace then writeln(vertextwo,'=', j); readln(infile?newweight); writeln(' with weight ', newweight); new(temp); temp*.vertex:=j; temp*.weight:=newweight; temp*.link:= graph.list[i]; graph.list[i];= temp; 
if undirected then beginnew(temp); temp *.vertex;=i; temp*.weight;=newweight; temp*.link:=graph.list[j]; graph.1ist[j]:=temp; end;

end;close(infile);end;
Procedure Printgraph(graph:graphtype; table:tabletype);var temp:ptr; ch:char;beginwriteln; writeln(' The graph is ');For ch:= 'A' to table.lastvertex do begin

writeln; write(' **', table.elements[ch]:13); temp:=graph.1ist[ch]; while temp <> nil do begin
write(' -> ', table.elements[temp*.vertex]:13,',', temp*.weight); temp:= temp *.1ink; end;end;end;
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Procedure Depthfirst(graphrgraphtype; point:char;var table:tabletype);Var id:integer; k:char;marked:markedtype;
Procedure Visit(graph:graphtype;var marked:markedtype;point:char);Var temp:ptr; begin

if trace then writeln('enter visit'); id:=id + 1; marked[point]:= id; 
writeln(table.elements[point]); temp:=graph.1ist(point];
if trace then writeln('traversing the list'); while temp <> nil do 

beginif trace then write(table.elements[ temp *.vertex]); if marked[ temp*.vertex] = 0then visit(graph, marked, temp*.vertex); temp:= temp*.link; 
end; end;

beginid:= 0 ;for k:= 'A' to table.lastvertex do marked[k]:=0; writeln('A depth first search is ');visit (graph, marked, point);{ for k:= 'A' to 'H' dowriteln(table[k], marked[k])}end;
Procedure enqueue ( var inqueue:queuetype;

inpoint:char);var temp:queuelink; 
beginnew(temp);temp*.info:= inpoint; 

temp*.1ink:= nil; if mqueue.front = nilthen inqueue.front:= temp else inqueue.rear*.link:=temp; inqueue.rear:=temp; 
end;

Procedure Clearqueue(var inqueue:queuetype); 
begin

inqueue.front:=nil; inqueue.rear:=nil;
end;
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Procedure Removequeue(var inqueue:queuetype;var outpoint:char);beqinif inqueue.front = nil
then writeln('cannot remove from queue - empty1) else if inqueue.front = inqueue.rear then begin

outpoint:= inqueue.front*.info; inqueue.front:=nil; inqueue.rear:=nil;end else begin
outpoint:= inqueue.front*.info; inqueue.front:= inqueue.front “.link; end;end;

Function Emptyqueue(inqueue:queuetype):boolean; beginif inqueue.front = nil then emptyqueue:= true else emptyqueue:=false;end;

Procedure Breadthfirstsearch(graph:graphtype;point:char; table:tabletype);
Var id:integer; marked:markedtype; queue:queuetype; k:char;

Procedure printqueue(queue:queuetype);Var t:queuelink; begint := queue.front;if trace then writeln('on the queue now'); while t <> nil do 
beginif trace then write(' ',table.elements[t *.info]);t:= t*.link; 
end;

end;
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Procedure visit(graph:graphtype;var marked:markedtype; point:char);var temp:ptr;begin
if trace then writeln('entering visit of

breadthfirst search');enqueue(queue,point);while not emptyqueue(queue) do begin
printqueue(queue); removequeue(queue,point); id:= id + 1; marked(pointl:=id; writeln( table.elements[point]); temp:= graph.list[point]; 
while tempo nil do 

beginif marked[temp*.vertex] = 0 then beginenqueue(queue, temp *.vertex); marked[temp *.vertex]:= -1; end;temp:= temp*.link; 
end;

end;if trace then writeln('exiting visit ofbreadthfirstsearch');
end;

beginif trace then writeln('entering
breadthfirstsearch');id:=0;clearqueue(queue); for k:= 'A' to table.lastvertex do marked[k]:=0 ; 

writeln ('a breadth first search is '); visit(graph,marked, point);
if trace then writeln('exiting breadthfirstsearch');end;

Procedure Clear(var list:listtype); beginif trace then writeln('enter clear');list:=nil; if trace then writeln('exit clear'); end;
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Procedure Addon(var list:listtype; y:char;yweight:integer);Var traverse, followup, p:ptr; found:boolean;begin
if trace then writeln(’enter addon');new(p);ip *. vertex: =y;if trace then writeln('inserting ',y , 'onto thewaiting list with a weight of', yweight);
p *.weight:=yweight;found:= false;
traverse:=1ist;followup:=list;
while (not found) and (traverse <> nil) do if yweight < traverse*.weight then found:= true else beginfollowup:=traverse; traverse:=traverse *.1ink; end;if (list= nil) 

then beginp*.link:=nil; list:=p; 
end

else if followup = traverse {it is the first inlist}then beginp *.1ink:=traverse; list:=p 
endelse {if found elsewhere in the list or notfound at all}

beginp *.1ink:=traverse; 
followup*.link:=p; end;

if trace then writeln('exit addon'); end; {procedure addon}
Procedure Remove (var list:listtype; var x:char); {removing from a priority queue} begin

x:= list*.vertex;{xweight:=list*.weight;} list:=list*.link; end;
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Function empty(list:listtype):boolean; begin
if trace then writeln('enter empty'); if list = nilthen empty;= true else empty:=false; if trace then writeln('exit empty'); end;

Procedure print(list:listtype);var t:ptr;begin
writeln('what is on the waiting list'); t:=list;while t o  nil do beginwriteln(t*.vertex,'and the weight is',t*.weight);t:=t*.link; end;end;

Procedure Minimumspanningtree(graph:graphtype;table:tabletype)
var status:statusarray; x,y:char; edges:integer; temp:ptr;waitinglist:listtype; parent:parenttype; waitingweight:markedtype; stuck:boolean;
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begin
if trace then writeln('enter mst'); x:='A'; status['A']:= intree; edges:=0;clear(waitinglist); for y:= 'B' to table.lastvertex do status[y]:= untouched; stuck:=false;while (edges < graph.edges) and (not stuck) do begin

temp:= graph.1ist[x]; while temp <> nil do 
begin

y := temp *.vertex;if (status[y] = waiting) and (temp *. weight < waitingweight[y]) then beginparent[y]:= x;waitingweight[y]:= temp*.weight; 
end;if status[y] = untouched then beginstatus[y]:= waiting; addon(waitinglist, y, temp*.weight); if trace

then beginwriteln('This is the waiting list in MST'); print(waitinglist); 
end; parent[y]:= x;waitingweight[y]:=temp“.weight; 

end;
temp:= temp*.link; 

end; (while tempo nil) 
if empty(waitinglist) then stuck:=true; if not empty(waitinglist) then beginremove(waitinglist, x); status[x]:=intree; edges:=edges + 1 end;

end; (while edges < graph.edges)writeln('These are the edges included in the Minimum Spanning Tree1);For y:='B' to table.lastvertex dowriteln(table.elements[y], ' is connected to ', table.elements[parent[y]], ' with distance ', waitingweight[y]);if trace then writeln('exit mst'); end;
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Procedure Updatewaitinglist(var inwaitinglist:listtype;
y:char;newdistance:integer);var front, trail:ptr; found:boolean;

begin
found:=false;front:= inwaitinglist;trail:=front;while (front <> nil) and (not found ) do if front*.vertex = y then found:=true else begintrail:=front; front:=front*.link; end;if (found) and (trail = front) then begininwaitinglist:=front*.link; addon(inwaitinglist, y, newdistance); endelse if found

then begintrail*.link := front*.link; 
addon(inwaitinglist, y, newdistance); end;if trace then writeln('exit update waitinglist'); end;

Procedure ShortestPath(graph:graphtype; v,w:char;table:tabletype);varstatus:statusarray; parent:parenttype; waitinglist:listtype; distance:markedtype; temp:ptr; stuck:boolean; x,y :char;
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beginif trace then writeln('entering shortest path'); readln;distance[v]:=0 ; parent[v]:=‘ ' ; clear(waitinglist);For y:='A' to table.lastvertex do status[y]:= untouched; status[v]:=intree; x; =v;
stuck:=false;while (x<> w) and (not stuck) do 

begintemp:=graph.1ist[x]; while temp <> nil do beginy :=temp".vertex;if (status[y] = waiting) and (distance[x] temp".weight < distance[y]) then beginparent[y]:= x? distancefy]:= distance[x] + temp".weight;updatewaitinglist(waitinglist, y, temp".weight); end;if status[yl = untouched then beginstatus[y]:=waiting; addon(waitinglist, y, temp".weight); parent[y]:= x; distancefy]:= distance[x] + temp".weight; 
end;temp:= temp".link; 

end;if empty(waitinglist) then stuck:=true else beginif tracethen beginwriteln(' This is the waiting list in shortest path'); print(waitinglist); 
end;remove(waitinglist,x); status[x]:= intree 

end;
end; { while x<> w and not stuck do)
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(output the path)
writeln('the shortest path in reverse order is1); while x<> ' ' do begin

writeln(table.elements[x]); x:= parent[x]; 
end;
if trace then writeln('exit shortest path'); end;
Procedure Printvertices (table:tabletype);Var ch:char; 

begin
For ch:= 'A' to table.lastvertex do write(table.elements[ch] ');writeln; 

endi.
Function emptystack(stack:stacktype):boolean; beginif stack = nil

then emptystack:=true else emptystack:=false;end;
Procedure clearstack(var stack:stacktype); beginstack:=nil; 

end;
Procedure Push(var stack:stacktype; newelement:char)var temp:stacktype;
begin

if trace then writeln('entering push stack'); new(temp);temp".info:= newelement; temp".next:= stack; 
stack:=temp;if trace then writeln('exiting push stack'); end;

Procedure Pop(var stack: stacktype;var oldelement:char);beginif trace then writeln('entering pop stack'); if emptystack(stack)then writeln('stack empty - data cannot be
returned')else beginoldelement:= stack".info; 

stack:= stack".next; end; if trace then writeln('exiting pop stack'); 
end;
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Procedure topologicalorder(var graph:graphtype;table:tabletype);Var temp:ptr;done:boolean? stack:stacktype;I,j,k :char ?
count:array[' A '..' Z ' ] of integer; (parallel array to each list in the graph to hold incount) begin
writeln(' Give the values for count, the number ofedges coming in to a vertex'); For I: = 'A' to table.lastvertex do beginwriteln ('How many edges come in to ',table.elements[i]);readln(Count[i]); end; if trace

then beginfor I:='A' to table.lastvertex dowriteln( '1=', I, 'count is ', count[i]); end;clearstack(stack);For I: = 'A' to table.lastvertex do if count[11= 0 then beginpush(stack,I); end;J:='A'? done:=false;
writeln( 'A topological ordering of the graph is '); while (J <= (table.lastvertex)) and (not done) do 

beginif emptystack(stack) then beginwriteln('loop formed,no topologicalsort ');done:=true ? end else beginpop(stack,I);wnteln(table.elements[I]) ; temp:= graph.list[I]; while (tempo nil) do begink:= temp".vertex ? count[k]:= count[k] - 1? if count[k] = 0then push (stack, k); temp:= temp".1ink; end; (of while temp <> nil do) end; (else)J:= succ(J)? end;end;
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begin {main program} trace:= false; readingraph(graph, table); printgraph(graph, table);writeln; writeln; writeln('please choose 1,2,3,4,5,6 and press enter'); writeln('l for depthfirst search'); writeln('2 for breadthfirst search'); 
writeln('3 for minimum spanning tree'); writeln('4 for shortest path between two vertices'); writeln('5 for topological sort'); 
writeln('6 for exiting'); readln(code); case code of 1: begin
writeln('where would you like to start your depthfirst search from?');Printvertices(table); 
state:=''; while not eoln do 
beginread(ch);state:= state + ch; 
end;point:= search(state, table); 

if point = ' 'then writeln('Your vertex name is not a choice') else depthfirst(graph, point, table); end;
2: beginwriteln('where would you like to start your breadthfirst search from?');Printvertices(table); 

state:=''; while not eoln do begin
read(ch);state:= state + ch; end;writeln('starting breadth first search from ',state);point:= search(state,table); 

if point = ' 'then writeln('Your vertex name is not a choice') else breadthfirstsearch(graph, point,table); end;
3: begin

if trace then writeln('before mst'); Minimumspanningtree(graph,table); 
if trace then writeln('after mst'); end;
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4: beginPrintvertices(table); writeln('Name the state of origin'); state;=''; while not eoln do 
beginread(ch);

state:= state + ch; 
end; readln;point;= search(state,table); if point = ' 'then writeln('Your vertex name is not a choice'); writeln('Name the state of destination'); state:=''; while not eoln do beginread(ch);state:= state + ch; 
end;pointtwo:= search(state,table); if pointtwo = ' 'then writeln('Your vertex name is not a choice'); if (point o '  ') and (pointtwo o '  ')then Shortestpath(graph,point,pointtwo, table) else writeln('Shortestpath will not work'); 

end;
5; topologicalorder(graph, table);
6:
end;end.
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APPENDIX F
QUESTIONNAIRE ON THE USE OF THE SOURCE BOOK

Please answer as many questions as possible from your 
teaching. It is realized that you were not able to use the source book in its entirety, for each teacher has his/her own style of teaching.
TECHNICAL
1. There was an attempt to keep notation consistent, such as vertices always named by capital letters.Was this helpful? Did you find any inconsistencies?

2. The lines of code were numbered. Was this helpful 
for class lectures and discussions?

3. Were the diagrams clear and informative?

4. Was it beneficial using the graph of the Southern states throughout the class notes and the graph of the Western states for homework? Or would you have liked using different graphs for more practice?

5. Do you have any other comments on the technical aspect?
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PEDAGOGICAL
6. Were you able to share the historical tidbits with the students? How did they enjoy this? Do you know of any other background information?

7. The tracing of code was very methodical throughout the source book.
a) How much emphasis do you place on tracing code?

b) Did you use any of the traces I gave in the source book? Which ones?

cj Which traces did you find worthwhile?

d) Which traces were unnecessary?

e) Do you use any other methods for tracing? Explain.

1) What do you think of tracing the recursive code 
for depth first search?

8. a) Were the homework sheets beneficial?

E) Which examples were "great"? Why?

c) Which examples were weak? Why?
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d) Do you have any other problems which would benefit the students' learning process?

9. Comment on the use of the Chart Method for Dijkstra's SSSP problem.

10. Notice the difference between the implementation for 
graph in the source book and in the program. The graph in the source book was left as simple as 
possible to avoid cumbersome code. In the program, graph is a record with the number of edges as a field. And in topological sort, the incount is kept as a separate parallel array instead of an extra field just to be consistent with the original implementation of graph. How exact should we be in our teaching? Please comment.

11. Do you have any other comments on the pedagogy of the source book?
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THEORETICAL
12. Do you think is is necessary to teach theintroductory ideas of graph theory - isomorphism, planar graphs, graph coloring - to master the 

algorithms that are usually taught in computer science courses -depth first, minimum cost spanning trees, single source shortest path?

13. Is there a topic in the source book you would omit?

14. Is there a topic that should be added to the source book?

15. Nell Dale, a writer of Pascal textbooks and influential in Undergraduate Computer Science Education, questioned at the 1990 SIGCSE conference, 
"Whatever happened to CS7 - the Algorithms course?" Would you agree that much of the attention in CS 
education has been centered on CS1, CS2, and Software Engineering?

16. How do you like mixing mathematics with computer science? How about your students?

17. Comment on the different types of proof, i.e.induction in the 5 Color Theorem, and the proof by contradiction in the lemma on p.32C.

18. Are your students enthusiastic about graph theory?
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19. Assuming the students have already learned the mathematical definition of Big Oh, how was the 
discussion of time complexity in the source book? Do you have any suggestions for improving it?

20. How does the learning of graph theory help in other courses in Computer Science?

21. Do you have any other comments on the theoretical aspect of the source book?

22. Do you have any other comments on the source book in general?


